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a b s t r a c t 

The majority of forecasting methods use a physical time scale for studying price fluctuations of financial 

markets, making the flow of physical time discontinuous. Therefore, using a physical time scale may ex- 

pose companies to risks, due to ignorance of some significant activities. In this paper, an alternative and 

original approach is explored to capture important activities in the market. The main idea is to use an 

event-based time scale based on a new way of summarising data, called Directional Changes. Combined 

with a genetic algorithm, the proposed approach aims to find a trading strategy that maximises prof- 

itability in foreign exchange markets. In order to evaluate its efficiency and robustness, we run rigorous 

experiments on 255 datasets from six different currency pairs, consisting of intra-day data from the for- 

eign exchange spot market. The results from these experiments indicate that our proposed approach is 

able to generate new and profitable trading strategies, significantly outperforming other traditional types 

of trading strategies, such as technical analysis and buy and hold. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The global financial system, recently rocked by the financial cri-

is, is open 24 hours a day, 7 days a week and can be defined

s a complex network of interacting agents (e.g., corporations, re-

ail traders). With an average daily turnover of 3–4 trillion USD

 International Monetary Fund, 2009 ) and price changes nearly ev-

ry second, its activity varies at different times of a day and reacts

n the announcement of political or economic news. 

The majority of traditional methods to observe such price fluc-

uations in financial time series are based on physical time change.

or example, what researchers and practitioners tend to do is to

se snapshots of the market, taken at fixed intervals; they first

ecide how often to sample the data, and then they take snap-

hots at the chosen frequency. Therefore, these snapshots create

n interval-based summary—e.g. daily closing prices or minute-by-

mmaries. However, important price movements (and thus poten-

ial profit) might be lost due to the creation of these artificial price

ummaries. For example, if we are using daily closing price sum-

aries we would not be able to observe the 6 May 2010 Flash

rash, which was a United States trillion-dollar stock market crash

hat lasted for approximately 36 minutes. 1 
∗ Corresponding author. 

E-mail addresses: M.Kampouridis@kent.ac.uk (M. Kampouridis), F.E.B.Otero@ 

ent.ac.uk (F.E.B. Otero). 
1 http://blogs.wsj.com/marketbeat/2010/05/11/nasdaq- heres- our- timeline- of- the- 

ash-crash/ Last access: 12 September 2016. 
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Directional Changes (DC) is based on the idea that an event-

ased system can capture significant points in price movements

hat the traditional physical time methods cannot. Hence, in-

tead of looking the market from an interval-based perspective, DC

ecord the key events in the market (e.g., changes in the stock price

y a pre-specified percentage) and summarise the data based on

hese events, moving away from a physical-time view to an event-

ased-time view. Under this new paradigm, a threshold θ is de-

ned, usually expressed by a percentage of the price. The mar-

et is then fragmented and summarised into upward and down-

ard trends. Different thresholds produce different price sum-

aries. Thus, the directional changes paradigm focuses on the size

f price change, while time is the varying factor; whereas in the

hysical-time paradigm, time was fixed (e.g. daily closing prices).

his new concept provides traders with new perspectives to price

ovements, and allows them to focus on those key points than an

mportant event took place, blurring out other price details which

ould be considered irrelevant, or even noise. 

The first works to use the concept of directional changes were

roposed in Olsen et al. (1997) and Glattfelder, Dupuis, and Olsen

2011) . In these works, new empirical scaling laws in foreign ex-

hange data series were discovered. These scaling laws aimed

o establish mathematical relationships among price moves, du-

ation and frequency. Then, directional changes and the scaling

aws from the above works were used to develop new trading

odels in Dupuis and Olsen (2012) . However, those models were

ot used for any financial forecasting purposes and were only

sed to derive statistics from potential trading. Furthermore, Aloud,

sang, Olsen, and Dupuis (2012) demonstrated the effectiveness of
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directional changes in capturing periodic market activities. In ad-

dition, Gypteau, Otero, and Kampouridis (2015) presented an ap-

proach to forecasting the daily closing price of financial markets

by combing directional changes and genetic programming. Lastly,

Tsang, Tao, Serguieva, and Ma (2016) introduced new trading indi-

cators for profiling markets under directional changes. As we can

observe, the majority of the above works have focused on theo-

retical aspects of directional changes—e.g. establishing mathemati-

cal relationships and developing new indicators. Only Dupuis and

Olsen (2012) and Gypteau et al. (2015) attempted to generate trad-

ing strategies based on the DC concept. However, Dupuis and Olsen

(2012) did not take advantage of the combined knowledge that can

exist by using multiple DC thresholds to generate different event-

based series; in addition, Gypteau et al. (2015) only tested their

approach on 4 datasets on daily closing prices. 

In this paper our aim is to offer a more complete analysis on

the directional changes paradigm from a financial forecasting per-

spective. We run extensive tests on intraday data from six cur-

rency pairs from the foreign exchange (FX) market: yearly tick data

from GBP/JPY, and yearly 10 minute interval data from EUR/GBP,

EUR/USD, EUR/JPY, GBP/CHF, and GBP/USD. In total, we run tests

on 255 different datasets . In terms of DC, we present two novel

types of trading strategies: a single-threshold DC strategy, and a

multi-threshold DC strategy. The former uses a single threshold

to generate event-based series. The multi-threshold strategy com-

bines different thresholds, where each threshold generates a dif-

ferent event-based series; then information from each series is ag-

gregated to form a more informed trading strategy. In addition,

we use a genetic algorithm (GA), which is a bio-inspired algorithm

mimicking an evolutionary process, to optimise the parameters of

the multi-threshold strategy. Such evolutionary algorithms have

extensively been used in financial forecasting problems and have

shown to be extremely effective ( Evans, Pappas, & Xhafa, 2013;

Kampouridis & Otero, 2015; Kwon & Moon, 2007; Mani, 1996 ).

The GA-generated trading strategies are then compared against the

single-threshold and the multi-threshold DC strategies. We test the

GA-generated trading strategies with other financial benchmarks,

such as buy and hold and technical analysis strategies. Overall, our

goals in this work can be summarised as follows: (i) demonstrate

that the paradigm of DC returns profitable strategies, (ii) provide

evidence that the strategies optimised by the GA are more prof-

itable than using standard DC strategies, and (iii) demonstrate

that our GA generated strategies outperform classical physical-

time based strategies, namely technical analysis and buy and

hold. 

Lastly, it should be acknowledged that directional changes

has similarities to the concept of the zigzag indicator ( Azzini,

da Costa Pereira, & Tettamanzi, 2010 ), which also focuses on an

event-based approach, and to the concept of perceptually impor-

tant point (PIP) identification ( Chen & Chen, 2016 ), which pre-

serves the salient points in a time series to reduce the number

of data points. However, as we’ve mentioned above, the recent re-

search on the DC field has led to the development on many new

concepts, such as the scaling laws and new trading indicators that

only exist under DC price summaries. Thus, in order to take ad-

vantage of all these new developments, we are focusing on the DC

paradigm. 

The rest of this paper is organised as follows: Section 2 presents

background information in the fields of financial forecasting, di-

rectional changes, and genetic algorithms. Then, Section 3 presents

the proposed DC-derived trading strategies, and Section 4 discusses

how we used the genetic algorithm to optimise the parameters of

these strategies. In addition, Section 5 presents the experimental

setup, and Section 6 presents and discusses the results. Finally,

Section 7 concludes the paper and discusses directions for future

work. 
t  
. Background 

Financial forecasting is a vital area in computational finance

 Tsang & Martinez-Jaramillo, 2004 ). The end goal of financial fore-

asting is deriving a trading strategy, which makes a recommenda-

ion whether to buy, hold or sell. There are numerous works that

ttempt to return profitable trading strategies—several examples

an be found in Binner, Kendall, and Chen (2004) ; Chen (2002) ;

u et al. (2015) ; Jaisinghani (2016) . 

There are several different strategies for the purposes of trading

n a financial market. A very common investment strategy, albeit

 passive one, is buy and hold , and commonly acts as benchmark

or trading algorithms. The principle of this strategy is based on

he view that in the long run financial markets give a good rate

f return to investors. Thus, in this strategy an investor buys an

sset and holds it for a long time, without being concerned about

hort-term price movements. Then at the end of a given period,

/he sells the stock and potentially makes profit based on the price

ifference. 

In contrary to buy and hold, there is also the belief that it is

rofitable to take advantage of short-term price movements, as

ong as one can anticipate/predict them. Technical analysis is such

 technique, and is discussed in Section 2.1 . Then, we present back-

round information on directional changes, a new way of sum-

arising financial data that can lead to new types of trading

trategies. This takes place in Section 2.2 . Finally, Section 2.3 gives

n overview of genetic algorithms, which is the technique used in

his paper for optimising the use of directional changes parame-

ers. 

.1. Technical analysis 

Technical analysis is a methodology for financial forecasting.

his method assumes that patterns exist in historical price data

nd that these patterns will repeat themselves. Consequently, it

s worth identifying these patterns, so that we can exploit them

n the future and make profit. Several works exist that are us-

ng technical analysis—recent examples can be found in Cervelló-

oyo, Guijarro, and Michniuk (2015) ; Chourmouziadis and Chat-

oglou (2016) . 

As part of technical analysis, several indicators are used. These

echnical analysis indicators are formulas that measure different

spects of a given financial dataset, such as trend, volatility and

omentum. Below in Eqs. (1) –(6) we present 6 popular indica-

ors that can be found in the literature ( Allen & Karjalainen, 1999;

ustin, Bates, Dempster, Leemans, & Williams, 2004; Martinez-

aramillo, 2007 ). Given a price time series [ P ( t ), t ≥ 0], and a period

f length L , these indicators are defined as follows: 

Moving Average (MA) 

A(L,t) = 

P (t) − 1 
L 

L ∑ 

i =1 

P (t − i ) 

1 
L 

L ∑ 

i =1 

P (t − i ) 

(1)

MA allows traders to observe any changes in the trend of the

rices of a stock. Typically, when a short-term MA (e.g., 12 days)

oes above a long-term MA (e.g., 60 days), this indicates upward

omentum. On the other hand, when a short-term MA goes below

 long-term one, this indicates downward momentum. 

Trade Break Out (TBR) 

BR(L,t) = 

P (t) − max { P (t − 1) , . . . , P (t − L ) } 
max { P (t − 1) , . . . , P (t − L ) } (2)

In order to understand this indicator better, we first need to ex-

lain two terms: support and resistance . Support is the point where

he price stops going down any further, whereas resistance is the
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oint where the price does not go up any further. Technical analy-

is suggests that downward price trends tend to reverse at support

oints, whereas upward trends tend to reverse at resistance points.

owever, when these points are breached (breakout), perhaps be-

ause of some new information regarding the market, it is likely

hat the price will continue in the same direction. Hence, traders

end to observe these breakouts and when a stock goes above its

oint of resistance, they buy; when on the other hand the stock

rice goes below its point of support, traders sell. 

Filter (FLR) 

LR(L,t) = 

P (t) − min { P (t − 1) , . . . , P (t − L ) } 
min { P (t − 1) , . . . , P (t − L ) } (3) 

This indicator is used to indicate buy or sell actions, depending

n whether the price movement goes in the opposite direction by

 predefined percentage. For instance, if the price reverses from a

ownward trend and rises by a specific percentage from the low

rice that it was previously, then the trader would perform a ‘buy’

ction. 

Volatility (Vol) 

ol(L,t) = 

σ (P (t) , . . . , P (t − L + 1)) 

1 
L 

L ∑ 

i =1 

P (t − i ) 

(4) 

A period of an increasing volatility could indicate a reversal in

he trend or strong downward trends. This would thus give an in-

ication to a trader that s/he should be cautious. On the contrary,

hen there is a period of decreasing volatility, this indicates up-

ard trends and traders should buy. 

Momentum (Mom) 

om(L,t) = P (t) − P (t − L ) (5)

When Mom is positive, this indicates an upward trend. If Mom

tarts decreasing, this could be an indication that there is going

o be a reverse in the previously upwards trend, and hence the

raders should be cautious. Finally, when Mom is negative, this in-

icates a downwards trend. 

Momentum Moving Average (MomMA) 

omMA(L,t) = 

1 

L 

L ∑ 

i =1 

Mom (L, t − i ) (6)

Finally, from Mom we can also calculate its MA , as shown in

he above equation, which allows us to obtain summaries of the

omentum movements. 

While the above indicators can offer valuable information, nor-

ally a trader would use many of these indicators together, thus

ombine their recommendations. It is very common in the liter-

ture to use machine learning algorithms to combine technical

nformation indicators ( Chiang, Enke, Wu, & Wang, 2016; Kim &

nke, 2016 ). In this work, we use EDDIE ( Kampouridis & Tsang,

010; 2012 ) as a baseline algorithm. EDDIE is a genetic program-

ing (GP) ( Koza, 1992 ) financial forecasting algorithm, which com-

ines the different technical analysis indicators together, in order

o form predictions. The advantage of combining technical analy-

is indicators is that their combined knowledge can lead to bet-

er predictions. We should also mention that EDDIE has been used

ver the years for different types of financial problems, such as

tock price movement prediction ( Kampouridis & Otero, 2015 ), ar-

itrage opportunities detection ( Tsang, Markose, & Er, 2005 ), and

arket crash detection ( Garcia-Almanza, Alexandrova-Kabadjova, &

artinez-Jaramillo, 2013 ). EDDIE has thus extensively and effec-

ively utilised technical analysis for its predictions, and for this rea-

on we have chosen to use it as a benchmark of an algorithm using

echnical analysis. 

As EDDIE is a GP algorithm, its trading strategies are repre-

ented as trees. A sample tree of EDDIE is presented in Fig. 1 . As
e can see, if the 20 days MA is less than or equal to 6.4 , then the

ser is advised to buy; otherwise, the user is advised to consult

nother tree, which is located in the third branch (“else-branch”)

f the tree. This tree checks if the 50 days MomMA is greater than

.57; if it is, it advises to not-buy, otherwise to buy. Of course this

s simply a sample tree; so additional/different technical analysis

ndicators could be used in other trees. 

In summary, what we have presented so far—namely buy and

old, technical analysis and EDDIE—all use information derived

rom data that is based on physical-time. As we have explained,

n this paper we propose using event-based price summaries for

reating the trading strategies, based on the concept of directional

hanges. 

.2. Directional changes 

The directional change (DC) approach is an alternative approach

or summarising market price movements. A DC event is identi-

ed by a change in the price of a given financial instrument. This

hange is defined by a threshold value, which was in advance de-

ided by the trader. Such an event can be either an upturn or a

ownturn event. After the confirmation of a DC event, an over-

hoot (OS) event follows. This OS event finishes once an opposite

C event takes place. The combination of a downturn event and

 downward overshoot event represents a downward trend and,

he combination of an upturn event and an upturn overshoot event

epresents an upturn trend. In other words, a downward trend is a

eriod between a downturn event and the next upturn event and

n upturn trend is a period between an upturn event and the next

ownturn event. 

Fig. 2 presents an example of how a physical-time price curve is

ransformed to the so-called intrinsic time ( Glattfelder et al., 2011 )

nd dissected into DC and OS events. As we can observe, two dif-

erent thresholds are used, and each threshold generates a differ-

nt event series. Thus, each threshold produces a unique series of

vents. The idea behind the different thresholds is that each trader

ight consider different thresholds (price percentage changes) as

ignificant. A smaller threshold creates a higher number of direc-

ional changes, while a higher thresholds produces fewer direc-

ional changes. 

Looking at the events generated by a threshold of θ = 0 . 01%

events connected via solid and dashed lines), we can observe that

ny price change less than this threshold is not considered a trend.

n the other hand, when the price changes above that threshold,

hen the market is divided accordingly, to uptrends and down-

rends. DC events are in solid lines, and OS events are in dashed

ines. So an downturn DC event starts at Point A and lasts until

oint B, when the downturn OS events starts. The downturn OS

asts until Point C, when there is a reverse in the trend, and an

ptrend starts, which lasts until Point D. From Point D to E we are

n an upturn OS event, and so on. 

As we mentioned, different thresholds generate different event

eries. Looking at theta = 0 . 018% (events connected via dotted and

ot-dashed lines), we can observe that the events generated are

ifferent: a downward trend starts from A and lasts until B 

′ , and

he downward OS is from Point B 

′ until C. Then, from Point C until

oint E there is an upward DC trend, and from E to E ′ there’s an

pward OS trend. Algorithm 1 presents the high-level pseudocode

or generating directional changes events. 

It is important to note here that the confirmation of a change of a

rend can only be confirmed retrospectively , i.e. only after the price

as changed by the pre-specified DC threshold value θ . For exam-

le, under θ = 0 . 01% we can only confirm that we are in a upward

rend from Point D onwards. Point D is thus called a confirmation

oint . Before Point D, the directional change had not been con-

rmed (i.e. the market price had not changed by the pre-specified
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Fig. 1. Sample tree generated by EDDIE representing a trading strategy using technical indicators. 

Fig. 2. Directional changes for tick data for the GBP/JPY currency pair. The solid and dashed lines denote a set of events defined by a threshold θ = 0 . 01% , while the dotted 

and dot-dashed lines refer to events defined by a threshold θ = 0 . 018% . The solid and the dotted lines indicate the DC events, and the dashed and dot-dashed indicate the OS 

events. Under θ = 0 . 01% , the data is summarised as follows: Point A �→ B (Downward directional change), Point B �→ C (Downward overshoot event), Point C �→ D (Upward 

directional change), Point D �→ E (Upward overshoot event), Point E �→ F (Downward directional change). Under θ = 0 . 018% , the data is summarised as follows: Point A �→ 

B ′ (Downward directional change), Point B ′ �→ C (Downward overshoot event), Point C �→ E (Upward directional change), Point E �→ E ′ (Upward overshoot event). 
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threshold value), thus a trader summarising the data by the DC

paradigm would continue believing we are in a downward trend,

which started from Point A. Similarly, a trader using θ = 0 . 01%

would continue considering being in a upward trend from Point D

until the price has reversed by θ = 0 . 01% , which only takes place

at the next confirmation point, i.e., Point F. So what becomes im-

portant here is to be able to anticipate the change of the trend as

early as possible, i.e. before Points C and E have been reached. In

addition, since different thresholds generate different event series,

we hypothesise that the combined information from these series

would lead to profitable trading strategies. 

The advantage of this new way of summarising data is that it

provides traders with new perspectives to price movements, and

allows them to focus on those key points that an important event

took place, blurring out other price details which could be consid-

ered irrelevant or even noise. Furthermore, DC have enabled re-

searchers to discover new regularities in markets, which cannot be

captured by the interval-based summaries ( Glattfelder et al., 2011 ).

Therefore, these new regularities give rise to new opportunities for

traders, and also open a whole new area for research. 

One of the most interesting regularities that was discovered in

Glattfelder et al. (2011) was the observation that a DC of thresh-

old θ is on average followed by an OS event of the same thresh-

old θ . At the same time, it was observed that if on average a DC
akes t amount of physical time to complete, the OS event will

ake an amount of 2 t . This observation is summarised in Fig. 3 ,

nd was only made under DC-based price summaries , and not under

hsycical-time summaries. Furthermore, this astonishing observa-

ion was made on all of the 13 different currency exchange rates

hat the authors of Glattfelder et al. (2011) experimented with. This

hus leads us to further hypothesise that such statistical proper-

ies could lead to profitable strategies, if appropriately exploited,

ainly because such properties are not well-known to traders yet.

herefore, the DC area is a rich research area that could potentially

ead to significant discoveries. 

In this work, we will present new trading strategies based on

he concept of directional changes. As part of the implementation

f this trading strategy we will be using the scaling law presented

bove; we have also introduced several parameters into the sys-

em, which we present in detail in Section 3 . 

Lastly, since a user/trader has to decide on which thresholds to

se for generating DC events, a problem that arises is what are ap-

ropriate thresholds and how much weight we should give to the

nformation provided by each threshold. We are thus faced with

n optimisation problem, where one has to look into the space of

ifferent thresholds and focus on the most promising ones. One

f the popular optimisation techniques is genetic algorithms, dis-

ussed next. 
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Algorithm 1 Pseudocode for generating directional changes events 

(source: Aloud et al. (2012) ). 

Require: Initialise variables (event is Upturn event, p h = p l = 

p(t 0 ) , �x dc (F ixed) ≥ 0 , t dc 
0 

= t dc 
1 

= t os 
0 

= t os 
1 

= t 0 ) 

1: if event is Upturn Event then 

2: if p(t) ≤ p h × (1 − �x dc ) then 

3: e v ent ← DownturnEv ent 

4: p l ← p(t) 

5: t dc 
1 

← t // End time for a Downturn Event 

6: t os 
0 

← t + 1 // Start time for a Downward Overshoot Event 

7: else 

8: if p h < p(t) then 

9: p h ← p(t) 

10: t dc 
0 

← t // Start time for Downturn Event 

11: t os 
1 

← t − 1 // End time for an Upward Overshoot 

Event 

12: end if 

13: end if 

14: else 

15: if p(t) ≤ p l × (1 + �x dc ) then 

16: e v ent ← U pturnEv ent 

17: p h ← p(t) 

18: t dc 
1 

← t // End time for a Upturn Event 

19: t os 
0 

← t + 1 // Start time for an Upward Overshoot Event 

20: else 

21: if p l > p(t) then 

22: p l ← p(t) 

23: t dc 
0 

← t // Start time for Upnturn Event 

24: t os 
1 

← t − 1 // End time for an Downward Overshoot 

Event 

25: end if 

26: end if 

27: end if 

Fig. 3. An example of a scaling law presented in Glattfelder et al. (2011) , which 

shows that (1) a DC event (solid line) of threshold θ is followed by an OS event 

(dotted line) of also threshold θ , and (2) the OS event lasts about the double 

amount of time that it took for the DC event to take place. 

2
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Algorithm 2 High-level pseudocode of a genetic algorithm. 

GA( p, Fitness , pc , pm ) 

p: population size 

Fitness : determines the quality of solutions 

pc: crossover rate 

pm : mutation rate 

1: Initialise population : P ← Generate p individuals (candidate solu- 

tions) at random 

2: Evaluate : for each i in P , calculate Fitness(i) 

3: while termination condition not satisfied do 

4: P g ← Create new population for generation g 

(a) Elitism : copy the r best individuals from P to P g 
(b) Select: probabilistically select ( p − r) individuals of P to 

add to P g and 

• Perform crossover between a pair of selected individuals 

according to pc 
• Perform mutation on a selected individual according to 

pm 

5: Update : P ← P g 
6: Evaluate : for each i in P , calculate Fitness(i) 

7: end while 

8: Return the individual with the highest fitness from P 
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.3. Genetic algorithms 

Genetic algorithms (GAs) are bio-inspired algorithms that

imic an evolutionary process to find good solutions to optimisa-

ion problems ( Godlberg, 1989; Michalewicz, 2002; Mitchell, 1996 ).

As have several elements that allow them to perform a robust

lobal search: (a) they work with a population of candidate so-

utions (individuals), rather than a single candidate solution; (b)

ndividuals of the population are evaluated according to a fitness

unction, which measures the quality of the candidate solution rep-

esented by an individual—the higher their quality, the more likely

hat their genetic material will be carried forward to the next pop-

lation; (c) the solution space is explored using genetic operators,

hich generate new offspring individuals from individuals of the

urrent population using a stochastic selection procedure based on

tness. 

Algorithm 2 presents a high-level pseudocode of a GA. The al-

orithm starts by creating a population of p candidate solutions,
here p is referred to as population size. These are evaluated by a

tness function in order to determine their performance in solving

he problem at hand. On each iteration ( while loop), a new popula-

ion is then generated by probabilistically selecting the fitter indi-

iduals from the current population. Some of the selected individ-

als undergo crossover and mutation, which introduce modifica-

ion to explore the search space; other are carried forward without

odifications. The new population replaces the old and the new

ndividuals are evaluated. This process is repeated until a maxi-

um number of generations is reached or the (near-)optimal solu-

ion is found, acting as a termination condition. Through this evo-

utionary process, GAs perform a robust global search in the space

f candidate solutions, less likely to get trapped into local minima.

epresentation. Individuals in GAs are usually represented as a

tring of symbols, either binary or numeric values—the represen-

ation is dependant on the problem at hand. Fig. 4 shows an illus-

ration of a real-valued representation. Each position in the string

s referred to as a gene and it represents a variable to be optimised.

t the start of a GA, the population is initialised with random indi-

iduals: each gene is initialised with a random value in the domain

f the variable. 

enetic Operators. Genetic operators manipulate the genetic mate-

ial of individuals (strings of symbols) to generate new offspring

ndividuals, mimicking a mechanism of inheritance. For example,

rossover create two new offspring solutions from two parent in-

ividuals by swapping portions of genetic material (or genes) from

ach parent. To illustrate, consider the uniform crossover operator

n Fig. 4 . This operator combines genes sampled uniformly from

wo parents. In addition to crossover, GAs usually employ a mu-

ation operator, which produces a new offspring individual from a

ingle parent. In uniform mutation , small changes are introduced to

 parent individual by choosing and modifying each gene at ran-

om. Both uniform crossover and uniform mutation are controlled

y two probabilities rates: the first one is used to decided whether

he selected individual will undergo crossover/mutation ( pc and pm

n Algorithm 2 , respectively) or not; the second rate is used to de-

ide if a gene is swapped/mutated or not. Fig. 4 shows an illustra-

ion of both uniform crossover and uniform mutation operators. 
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0.7 0.3 0.5 0.4 0.2 0.1 0.9 0.6

0.3 0.1 0.8 0.9 0.4 0.2 0.7 0.6 0.7 0.1 0.8 0.4 0.4 0.1 0.9 0.6

0.5 0.1 0.4 0.2 0.1 0.7 0.2 0.8 0.5 0.1 0.7 0.2 0.6 0.7 0.2 0.1

0.3 0.3 0.5 0.9 0.2 0.2 0.7 0.6

Uniform crossover:

Uniform mutation:

Parent individuals Offspring

Fig. 4. Illustration of uniform crossover and uniform mutation operators. Individuals are represented as a string of real values. The dark positions (genes) in parent individuals 

are the ones that will be swapped/mutated to generate offspring individuals. 
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Elitism and Selection. Elitism is the process of allowing the best in-

dividuals (in terms of fitness) of the current population to be car-

ried over to the next without modification. This guarantees that

the solution fitness will not decrease from one generation to the

next. The remaining individuals are subject to a probabilistic selec-

tion for inclusion in the next generation population. One of the

most popular selection strategies is the tournament selection . In

tournament selection, k individuals are selected at random, where

k denotes the tournament size. The more fit individual of the se-

lected subset is then selected for inclusion in the next population. 

2.4. Summary 

In this section we started by discussing two popular trading

techniques, namely buy and hold and technical analysis. Both of

these two methods will form our financial benchmarks during our

experimental phase. In addition, we presented in detail the con-

cept of directional changes, which our trading strategies are going

to be based on. Lastly, we discussed what genetic algorithms are,

as they are going to be our optimisation engine. In the next sec-

tion, we present two new types of trading strategies, which are

derived by directional changes. 

3. DC-derived trading strategies 

In this section, we will present how we can use the DC

paradigm to derive two different types of trading strategies. The

first one is going to be based on a single DC threshold, and is go-

ing to be presented in Section 3.1 . The second strategy is going to

be based on multiple DC thresholds and is going to be presented

in Section 3.2 . 

3.1. Single-threshold DC trading strategy 

As we have already discussed in Section 2.2 , a physical-time

price curve can be transformed to intrinsic time, where it’s dis-

sected into DC and OS events. When a DC event is confirmed (ei-

ther upturn or downturn), the OS period starts. It is worth re-

iterating that we can only know the market has changed direction

in hindsight; we only detect a DC event only after the DC con-

firmation point has been observed. After the DC confirmation has

taken place, we are during an OS period, which lasts until there

is a reverse in the direction, which is again only confirmed once

we have reached the next confirmation point. Therefore, if one can

act during the OS period and before the reverse of the trend, then

this can lead to a profitable trading strategy. The idea is that if we

are in an downtrend, we buy at the last point (ideally) of the OS
vent, which is the lowest observed value. When the trend then

everses and we are in an uptrend, we can then sell at a much

igher price and make profit. The same principle applies for up-

rend: sell as close as possible to the end of the OS event. To sum

p, when there is a downtrend, we buy; when there is an uptrend,

e sell. 

In order to make the above clearer, let us refer back to Fig. 2 .

s we can observe, after the confirmation of the downward trend

n Point B, a period of OS starts, which lasts until Point D, which

s the next DC confirmation point, confirming that we are now in

 upward trend. It is thus important to take a buy action during

he OS event and ideally before the reverse of the trend, which as

e can see takes place at Point C. The closer to the end of the OS

vent we can trade (i.e., the closer to Point C), the higher the profit

argin a trader can make. 

Thus, it is crucial to be able to anticipate the reverse in the

rend and be able to act before that. In order to tackle this, we use

he scaling laws we discussed earlier in Section 2.2 . As explained,

hese laws states that when on average a DC event takes t amount

f physical time to complete, the OS event takes an amount of 2 t .

ecause this is an approximation and it can rely on the underlying

ataset, we wanted to have our own calculations for the datasets

e are dealing with. Thus, what we did was to calculate the av-

rage time of each OS event for every period we would use as a

raining set. We hence created two variables, expressed as the av-

rage ratio of the OS event length over the DC event length. These

wo variables are r u and r d , where r u is the average ratio of the

pwards OS event, and r d is the average ratio of the downwards

S event. Our calculations showed that these two variables had

ndeed values around 2 (ranging between 1.8–2.0), which confirms

he scaling law findings. More importantly, this allowed us to have

ailored values for r u and r d , for each training set we use. 

After obtaining these ratios, we were able to anticipate the end

f a trend (approximately) and as a result make trading decisions

nce an OS event had reached the average ratio of r u or r d . Of

ourse, in reality things are not that simple. The r u and r d ratios

re just average approximations, so many times the OS event might

ast longer or shorter than anticipated. In an attempt to address

his issue, we have created two user-specified parameters, namely

 1 and b 2 , which define a range of time within the OS period,

here trading is allowed. For instance, if a trader expects the OS

vent to last for 2 hours, then we can define an action range of

 b 1 , b 2 ] = [0 . 90 , 1 . 0] , which effectively means we are going to trade

t the last 10% of the 2 hours duration, i.e. in the last 12 minutes.

y introducing b 1 and b 2 , we are essentially attempting to antici-

ate the approximation errors that might have been created during

he calculation of r u and r d . Eq. (7) presents the formulas for these
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Table 1 

DC strategy parameters. 

Parameter Description 

r u Average ratio of upwards OS event over the upwards DC 

event length 

r d Average ratio of downwards OS event over the downwards 

DC event length 

Q trade Quantity to trade 

N ↓ Number of thresholds recommending to buy 

N ↑ Number of thresholds recommending to sell 

N θ Total number of thresholds used in the experiments 

Q Quantity for trading 

b 1 Start of trading period during an OS event 

b 2 End of trading period during an OS event 

b 3 Range of prices close to the trading price P trade that a trade 

can be perfomed 
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tarting and ending for upward and downward OS periods: 

 

U 
0 = (t dc 

1 − t dc 
0 ) × r u × b 1 

 

U 
1 = (t dc 

1 − t dc 
0 ) × r u × b 2 

 

D 
0 = (t dc 

1 − t dc 
0 ) × r d × b 1 

 

D 
1 = (t dc 

1 − t dc 
0 ) × r d × b 2 , (7) 

here t U 
0 

, t U 
1 

are the start and end times for upwards overshoot pe-

iod, respectively, and t D 0 , t 
D 
1 are the start and end times for down-

ards overshoot period, respectively. In addition, t dc 
0 

and t dc 
1 

are

he start and the end times of the current DC event, after the con-

rmation of the event has taken place at time t dc 
1 

. Their difference

 

dc 
1 

− t dc 
0 

returns the length of the current DC event. Also, r u and r d 
re the average ratios of the upwards and downwards OS period

engths, respectively, over the current DC period. Lastly, b 1 and b 2 
re the two parameters defining the action range within the OS

eriods, as explained above. 

Although b 1 and b 2 define a window for trading, a problem

hat exists with high-frequency data—particularly tick data—is that

here can still be hundreds of points to trade, even if that trading

indow is very narrow. This could be problematic, because trading

t multiple price levels will not return the highest profit. What is

ore effective is to sell (buy) at a price as expensive (cheap) as

ossible. To achieve this, we introduced another variable b 3 , which

revents traders from doing expensive trades. To ensure this, we

nly allow the system to sell at the most expensive (peak) price

 peak and buy at the cheapest recorded price (trough) P trough , or in

rices in close range. This range is determined by the value of b 3 .

herefore a trader would sell when the price is equal to P peak × b 3 ,

r buy when the price is equal to P trough × (1 − b 3 ) . Essentially, b 3 
s a value within the range of [0, 1] and defines the range of prices

lose to P peak and P tough that the system will perform an action. 

Furthermore, there is a user-specified parameter Q , which con-

rols the trading quantity. Lastly, it should be mentioned that our

ystem allows short selling. However, in order to avoid excess short

elling, which can lead to significant losses, we have introduced a

top loss mechanism that is called short selling allowance . This al-

owance is a percentage of our budget and allows short selling ac-

ivities up to this pre-specified percentage. This percentage is de-

ided during parameter tuning. 

.2. Multi-threshold DC trading strategy 

This strategy builds on the previous one, as it still uses Eq.

7) and the b 3 variable. But instead of only using a single threshold,

t combines information by multiple thresholds. As we discussed in

ection 2.2 , a DC event is identified by a change in the price by a

iven threshold value. The use of different DC thresholds provides

 different view of the data: smaller thresholds allow the detection

f more events and, as a result, actions can be taken promptly;

arger thresholds detect fewer events, but provide the opportunity

f taking actions when bigger price variations are observed. This

roposed trading strategy combines the use of different threshold

alues in an attempt to take advantage of the different character-

stics of smaller and larger thresholds. 

From the single-threshold strategy we know that under a spe-

ific threshold we should buy towards the end of a downtrend

nd sell towards the end of an uptrend (i.e. towards the end of

he respective OS events). Since now we are dealing with multiple

hresholds, each threshold summarises the data in a unique way.

or example, at one point in time the trading strategy under one

hreshold could be recommending a buy action, while under a dif-

erent threshold recommend a sell action. As we have already ar-

ued, the advantage of having the multiple thresholds is that we

ave multiple recommended actions per data point. In order to de-

ide which action to follow, a majority vote takes place. 
In order to allow for a majority vote, we associate each DC

reshold to an equal weight of 1 (vote). Therefore, W 1 = W 2 =
 3 = . . . = W N θ

= 1 , where N θ is the total number of thresholds

sed. As a result, at any point in time the trading strategy is able to

ake a buy/sell/hold recommendation based on the combined rec-

mmendations of all thresholds. As we already know, each thresh-

ld produces DC events; thus each threshold is able to make this

uy/sell/hold recommendation. Since we have N θ thresholds, this

eans that at any point in time we receive N θ recommendations.

n order to decide which recommendation to follow, we sum the

eights of the thresholds: if the sum of the weights for all thresh-

lds recommending a buy (sell) action is greater than the sum of

he weights for all thresholds recommending a sell (buy) action,

hen the strategy’s action will be to buy (sell). The hold action is

 special case of both buy and sell and it happens when we are

utside the price range recommended by b 3 , or when there is not

nough quantity to act, see Algorithm 4 lines 8, 11, and 26. 

In addition, the multi-threshold trading strategy is able to make

ecommendations on the trading quantity Q trade . The decision for

his quantity is a dynamic decision, taken by the number of DC

hresholds that are advising to sell (buy) at a certain point in

ime: if many thresholds are advising to sell (buy), then the al-

orithm sells (buys) a higher quantity of the given currency pair.

qs. (8a) and ( 8b ) present the relevant formulas, for buy and sell,

espectively: 

 trade = 

(
1 + 

N ↓ 
N θ

)
× Q (8a) 

 trade = 

(
1 + 

N ↑ 
N θ

)
× Q (8b) 

here Q trade is the quantity to trade, N ↓ and N ↑ are the number of

hresholds recommending to buy and sell, respectively, N θ is the

otal number of thresholds used in our experiments, and Q is the

ser-specified quantity already presented in Section 3.1 . As we can

ee, by taking into account the recommendations given by the DC

hresholds, we are giving more or less weight to the Q quantity,

esulting to a new quantity Q trade . 

This concludes the presentation of the two proposed DC strate-

ies and their respective parameters. For the convenience of

he reader, we have summarised and listed these parameters in

able 1 . We have also summarised the trading strategy processes

nto pseudocodes: Algorithm 3 presents an overview of how the

eturn of a trading strategy is calculated. In addition, Algorithm 4

resents how the buy and sell actions take place. While these al-

orithms are for the multi-threshold strategy, they can also be ap-

lied to the single-threshold strategy, where there is only a single

eight (for the single threshold) of W = 1 and Q = Q . 
1 trade 
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Algorithm 3 Pseudocode for calculating the return of a trading 

strategy. 

Require: Initialise variables ( cash = budget, Q trade = 0 , current = 0 ) 

Require: b 1 , b 2 , b 3 , Q and weight values W 1 = W 2 = . . . = W N θ
= 1 

for each threshold 

1: for i = 0 ; i < dataset _ length ; i + + do 

2: Initialise variables weights for buy and sell: W B = W S = 0 , 

number of upturn and downturns: N ↑ = N ↓ = 0 

3: current ← current + 1 

4: if P C > P peak then // P C is the current price and P peak is the 

highest so-far price. 

5: P peak ← P C 
6: else if P C < P trough then 

7: P trough ← P C 
8: end if 

9: for j = 0 ; j < N θ ; j + + do 

10: Calculate t U 
0 

, t U 
1 

, t D 
0 
, t D 

1 
as explainedin Equation 7 

11: if event is Downturn Event then 

12: W B ← W B + W j 

13: if current within range of [ t D 
0 
, t D 

1 
] then 

14: N ↓ ← N ↓ + 1 

15: else 

16: N ↓ ← N ↓ − 1 

17: end if 

18: else 

19: W S ← W S + W j 

20: if current within range of [ t U 
0 

, t U 
1 

] then 

21: N ↑ ← N ↑ + 1 

22: else 

23: N ↑ ← N ↑ − 1 

24: end if 

25: end if 

26: end for 

27: if W S > W B then 

28: Perform the sell action for a given quantity [seeAlgo- 

rithm 4] 

29: else if W S < W B then 

30: Perform the buy action for a given quantity [seeAlgo- 

rithm 4] 

31: end if 

32: end for 

33: W ealth ← cash + Q trade × P C 
34: Return ← 100 × wealth 

budget 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 Pseudocode for performing the buy and sell actions. 

1: if W S > W B then 

2: if N ↑ > 0 and P C ≥ b 3 × P peak then 

3: Q trade ← (1 + 

N ↑ 
N θ

) × Q 

4: if Q trade > 0 or (Q trade ≤ 0 and | Q trade | × P C ≤
shortSel l ingAl l owance × budget) then 

5: Cash ← Cash + Q trade × P C 
6: P F L ← P F L − Q trade // PFL stands for Portfolio, i.e. the 

amount/quantity of the currency pair we are currently holding 

7: else 

8: Hold 

9: end if 

10: else 

11: Hold 

12: end if 

13: else if W S < W B then 

14: if N ↓ > 0 and P C ≤ P trough + (P trough × (1 − b 3 )) then 

15: Q trade ← (1 + 

N ↓ 
N θ

) × Q 

16: if cash > Q trade × P C then 

17: Cash ← Cash − Q trade × P C 
18: P F L ← P F L + Q trade 

19: else 

20: // Buy only as much as you can afford 

21: Q 

′ 
trade 

is the new quantity to be traded, up to the 

amount we can afford 

22: Cash ← Cash − Q 

′ 
trade 

× P C 
23: P F L ← P F L + Q 

′ 
24: end if 

25: else 

26: Hold 

27: end if 

28: end if 

Fig. 5. An example of a 8-gene GA chromosome. The first four genes are : Q, b 1 , b 2 
and b 3 , respectively. The remaining four genes are the weights for the DC thresh- 

olds: W 1 , W 2 , W 3 , and W 4 . 
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4. Optimising multi-threshold strategies via a genetic 

algorithm 

In the previous section, we presented two novel trading strate-

gies based on the DC paradigm: a single-threshold strategy and a

multi-threshold strategy that builds on top of the single-threshold.

While the multi-threshold strategy has the advantage of combin-

ing recommendations from different thresholds, a problem that ex-

ists is that we do not know how much weight we should give to

each threshold. Simply assigning an equal weight of 1 to all of the

thresholds might be a naive approach. Some thresholds might be

more useful than others, hence we should give them more weight.

Thus, we use a genetic algorithm (GA) to evolve real values for

the weight of each DC threshold. In addition, we also evolve some

other DC parameters that are crucial to the success of the trading

strategy. All these are discussed next, in Section 4.1 , where the GA

representation is presented. Then, Section 4.2 presents the GA op-

erators and Section 4.3 presents the fitness function. 
.1. Representation 

Each chromosome consists of 4 + N θ genes, where N θ is the

umber of different threshold values of the multi-threshold strat-

gy. The number 4 denotes that in addition to the thresholds, there

re also 4 additional parameters to be optimised: Q (first gene),

 1 (second gene), b 2 (third gene), and b 3 (fourth gene). Q, b 1 , b 2 
nd b 3 refer to the DC-related parameters presented in Section 3.1 .

ach remaining gene in the chromosome (positions 5 to [4 + N θ ])

epresents a weight associated to a given threshold. Thus, after

rst deciding the DC threshold values (through parameter tuning)

nd generating the DC events per threshold, each GA gene is as-

igned the same initial weight. Therefore, W 1 = W 2 = W 3 = . . . =
 N θ

= 

1 
N θ

. The GA then evolves the weight for each threshold (in

ddition to the 4 parameter values in positions 1–4). 

As a result, at any point in time a GA individual is able to make

 buy/sell/hold recommendation based on the combined recom-

endations of all thresholds by using the majority vote mechanism

e presented in Section 3.2 . An example of an 8-gene GA chromo-

ome is presented in Fig. 5 . 

Based on this example, the GA recommends buying/selling a

uantity of Q equal to 10, and only acting in the period [0.9, 1.0]
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u  
f the estimated duration of the OS event (i.e., in the last 10% of

he length of the OS event). In addition, the fourth gene recom-

ends to only consider prices that are within a 20% range (the

alue of b 3 is 0.8, so 1 . 0 − 0 . 8 = 0 . 20 or 20%) of the highest (low-

st) recorded price P peak ( P trough ). In addition, to decide the trad-

ng action, we would check the recommendation of each individ-

al threshold. For this example, let us assume that the first thresh-

ld recommends buy, the second threshold recommends sell, the

hird threshold recommends buy, and the fourth threshold recom-

ends hold. We would then sum up the weights of the thresholds,

ccording to each action. Therefore, the weight for buying W B is

qual to W 1 + W 3 = 0 . 2 + 0 . 2 = 0 . 4 , and the weight for selling W S

s equal to W 2 = 0 . 5 . 2 Since W S > W B , the GA’s recommendation

ould be to sell. 

.2. Operators 

The following three operators are being used during the evolu-

ionary process: elitism, uniform crossover and uniform mutation—

s detailed in Section 2.3 . 

In elitism, the best-performing individual (in terms of fitness)

s copied to the next generation. In uniform crossover, two parents

re selected via a tournament selection. In this type of crossover,

he genes between the two parents are swapped with a fixed prob-

bility of 0.5. In addition, we ensure that the value of the third

ene is always greater than the value of the second gene, i.e. b 2 
lways has to be greater than b 1 . Lastly, for the uniform mutation

perator a single parent is selected, again by tournament selection.

ith a probability of 0.5, each gene of the chromosome is mutated,

nd a different value is obtained. It should be clarified here that for

he first gene (quantity Q ), the mutated value can be any integer

p to a pre-specified maximum quantity value; whereas for the

emaining genes (i.e., b 1 , b 2 , b 3 and all weights W ), the mutated

alues are real numbers between 0 and 1, where b 2 > b 1 . 

.3. Fitness function 

Several different metrics have been used in the literature as fit-

ess function in algorithmic trading problems. Some examples are:

ealth, profit, return, Sharpe ratio, information ratio ( Brabazon &

’Neill, 2006; Bradley, Brabazon, & O’Neill, 2009 ). In this paper, we

et our fitness equal to the total return minus the maximum draw-

own, presented in Eq. (9) : 

f f = Return − α × MDD 

DD = 

P trough − P peak 

P peak 

, (9) 

here Return is the return of the investment, MDD is the max-

mum drawdown, and α is a tuning parameter. Maximum draw-

own is defined as the maximum cumulative loss since commenc-

ng trading with the system. It is used to penalise volatile trading

trategies in terms of return. Its value is given as the percentage

f 
P trough −P peak 

P peak 
, where P trough the trough value of the price, and P peak 

s the peak value of the price. Lastly, the tuning parameter α is

sed to define how much risk-averse the strategy is. The more risk-

verse in terms of wishing to avoid a catastrophic loss, the higher

he value of α. 

. Experimental setup 

This section is divided into three parts: Section 5.1 , where we

resent the data we use for our experiments, Section 5.2 , where
2 As explained in the previous section, the hold action is an exceptional case that 

s considered as an alternative to buy and sell actions; see Algorithm 4 , Lines 8, 11 

nd 26 for detail. 

v  

p

e present the experimental setup, and lastly, Section 5.3 , which

resents the experimental parameters. 

.1. Data 

We use two different types of datasets: (i) tick data and (ii)

ntra-day data at 10 minute intervals. 3 In the first case of tick data,

e use a year’s FX spot tick data on a daily basis from the cur-

ency pair of GBP/JPY (British Pound and Japanese Yen), for the

eriod June 2013 to May 2014. Thus, we use a daily rolling win-

ow, where a single day is used for training the algorithm, and the

onsecutive day is used for testing the returned model. Exception

o this rule was when there is a weekend, which is not taken into

ccount. The number of tick data can vary significantly from day to

ay, and even more from month to month. Nevertheless, each day

as a very high number of observations, giving more than enough

raining data for the GA to learn and produce a profitable model.

s we can observe from Fig. 6 , where the minimum and maxi-

um number of daily tick data on a given month are presented,

 day could have anything between approximately 70,0 0 0 transac-

ions (minimum value of April 2014) to above 90 0,0 0 0 transactions

maximum value of June 2013). It should be noted that this high

umber of data per day should not considered to be a problem for

he DC algorithm, i.e. that the algorithm is dealing with too much

ata to handle; on the contrary, this is one of the strengths of the

lgorithm, since it will only be focusing on the important events,

hus filtering out all ‘noise’ from the data. 

In addition, we use 10 minute interval high frequency data for

he following currency pairs: EUR/GBP (Euro and British Pound),

UR/USD (Euro and US dollar), EUR/JPY (Euro and Japanese Yen),

BP/CHF (British Pound and Swiss Franc), and GBP/USD (British

ound and US dollar). The period is again June 2013 to May 2014.

ince the amount of the 10-minute data is significantly less than

he tick data (e.g. for the whole of June 2013 for EUR/GBP there’s

round 30 0 0 entries for the whole month), we test our algorithms

n the following way: every month is split into its own dataset,

ith the first 70% of the data being the training set, and the re-

aining 30% being the testing set. 

.2. Algorithmic experimental setup 

In order to demonstrate the efficiency of our evolutionary

vent-based DC approach, we will be comparing it with several

ther benchmarks. This section presents in detail the different al-

orithms that we use to benchmark our approach. It should be

tated that the objective function (i.e., the function that all trad-

ng strategies are optimising) for all of these algorithms is Eq. (9) ,

hich was presented earlier in Section 4.3 . 

Our proposed algorithm is going to be benchmarked against

 different other types of trading strategies: (i) single-threshold

nd multi-threshold directional changes, (ii) buy and hold, and (iii)

echnical analysis. In addition, there are 4 parameters for all DC

onfigurations, which depending on the experimental setup, we

ptimise or not. These 4 parameters are: Q, b 1 , b 2 , and b 3 . Please

efer back to Section 3.1 for a detailed presentation of these pa-

ameters. Therefore, by taking the above parameters into account,

e have the following different configurations, which will consti-

ute our different algorithmic experimental setups: 

Standard directional changes 

The purpose here is to present the results of the DC paradigm,

nder a single-threshold and a multi-threshold framework. The

alues of thresholds were decided during the parameter tuning

rocess. 
3 All data was purchased by OlsenData: http://www.olsendata.com 
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Fig. 6. Minimum and maximum daily tick data (transactions) per month for the GBP-JPY currency pair, for the period June 2013 to May 2014. 
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1. Single-threshold, with no evolution (SDC) 

This is the trading strategy presented in Section 3.1 . The 4

parameters [ Q, b 1 , b 2 , b 3 ] have not been optimised and have

fixed values: Q = 1 , b 1 = 0 , b 2 = 1 , b 3 = 1 , which essentially al-

low trading of a single quantity throughout the length of the OS

event for any given price, no matter how expensive or cheap it

is. Of course, this is not the optimal setup for these values and

this is why in the next setup we evolve these parameters to ob-

tain better values. However, we consider it important to report

results from this setup of SDC to demonstrate that it is crucial

to optimise the four parameters [ Q, b 1 , b 2 , b 3 ]. Lastly, in order

to decide which (single) threshold to use, we experiment with

several different thresholds (one at a time) and report the per-

formance of the best threshold. 

2. Single-threshold, with evolution on the 4 parameters (SDC EVO ) 

As above. The difference is that now we use a standard GA to

evolve the values of the 4 numeric parameters [ Q, b 1 , b 2 , b 3 ].

The idea behind this setup was to evolve the 4 parameters for

a single threshold, so that algorithmic performance is optimised

for that specific threshold. 

3. Multi-threshold, with no evolution (MDC) 

This is the trading strategy presented in Section 3.2 . The 4 pa-

rameters [ Q, b 1 , b 2 , b 3 ] have not been optimised and have fixed

values: Q = 1 , b 1 = 0 , b 2 = 1 , b 3 = 1 . 

4. Multiple-threshold, with evolution on the 4 parameters (MDC EVO ) 

As above. The difference is that now we use a standard GA to

evolve the values of the 4 numeric parameters [ Q, b 1 , b 2 , b 3 ]. 

Buy and hold 

Buy and hold is a common benchmark for trading algorithms.

Under this strategy, one would buy at a certain point in time

and not act (hold) for a long period. Thus, traders are not con-

cerned with short-term price movements, as they expect that

in the long term the value of their portfolio will increase. 

5. Buy and Hold (BH) 

Buy at the beginning of the trading period in August 2013 4 , sell

at the end of the period, in May 2014. 

Technical analysis 

6. EDDIE 
4 The first two months (June and July 2013) were used for parameter tuning, and 

the remaining ten months were used for our experiments. More details about this 

in Section 5.3 . 

a  

m  

c  

M  

i  

t

The EDDIE algorithm, which uses technical analysis indicators

to evolve decision trees that make suggestions for buying, sell-

ing, or holding. 

Proposed algorithm 

7. DC + GA 

Our proposed algorithm, which evolves both the DC threshold

weights [ W 1 , W 2 , . . . , W N θ
] and the 4 DC parameters [ Q, b 1 , b 2 ,

b 3 ]. 

As we can observe, DC + GA will be benchmarked against 6 dif-

erent types of traging strategies. Next, we present the parameter

uning process that we undertook. 

.3. Experimental parameters 

In order to decide the values for the parameters for the al-

orithms, we undertook a parameter tuning process by using the

/F-Race package ( Lopez-Ibanez, Dubois-Lacoste, Stutzle, & Birattari,

011 ). It should be noted that buy and hold is a simple process

ith no parameters that require tuning. I/F-Race implements the

terated racing procedure, which is an extension of the Iterated F-

ace process. Its main purpose is to automatically configure optimi-

ation algorithms by finding the most appropriate settings, given a

et of instances of an optimisation problem. It builds upon the race

ackage by Birattari, Yuan, Balaprakash, and Stutzle (2009) . 

In order to avoid biased results, we used the first two months of

ur data (June and July 2013) for each currency pair (both tick and

0-minute data) for tuning purposes. Thus, I/F-Race was applied

o the data of June and July 2013. The remaining ten months (Au-

ust 2013–May 2014) were used only with the tuned parameters,

fter I/F-Race was complete. At the end of the tuning process, we

icked the best parameters returned by I/F-Race. These parameters

onstitute the experimental parameters for our algorithms. These

arameters are presented in Table 2 . The buy and hold setup did

ot have any parameters, so it is not present in Table 2 . 

As we can observe, we will be using 5 different thresholds.

hese thresholds are: 0.01%, 0.013%, 0.015%, 0.018%, and 0.02%. In

ddition, it should be mentioned that when we use an evolution-

ry algorithm ( SDC EVO , MDC EVO , EDDIE, and DC+GA), the experi-

ents are run 50 times on each dataset and the results presented

orrespond to the average value over the 50 executions; SDC and

DC are run just once per dataset, since they represent determin-

stic strategies. Similarly, the buy and hold strategy BH is run one

ime per dataset, as it also represents a deterministic strategy. 
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Table 2 

Experimental parameters determined using I/F-Race. 

Parameter SDC / MDC SDC EVO / MDC EVO / DC+GA EDDIE 

Population N/A 10 0 0 500 

Generations N/A 35 30 

Tournament size N/A 7 2 

Crossover probability N/A 0 .90 0 .90 

Mutation probability N/A 0 .10 0 .10 

Number of thresholds 5 5 N/A 

Short selling allowance 0 .25 0 .25 0 .25 

MDD weight 0 .20 0 .20 0 .20 

Fig. 7. Day-to-day average return for the period August 2013 to May 2014 for SDC, SDC EVO , MDC, MDC EVO and DC+GA. Results shown in % values. 
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5 We are analysing MDD performance only on strategies with positive returns, as 
. Results 

This section presents results for all DC algorithms, and the two

hysical-time financial benchmarks of BH (buy and hold) and ED-

IE (technical analysis), for the currency pair of GBP/JPY under tick

ata, and for the remaining five currency pairs (EUR/GBP, EUR/JPY,

UR/USD, GBP/CHF, GBP/USD) under the 10-minute interval data.

xperiments took place for the 10 month period of August 2013–

ay 2014. As explained in Section 5 , we used a daily rolling win-

ow for GBP/JPY, where every day was used for training the al-

orithms, and the following day was used for testing. The above

etup resulted in 205 different datasets, i.e. each algorithm was

ested at 205 different unseen datasets for the tick data of GBP/JPY.

n addition, for each of the remaining five currency pairs we under-

ook experiments for each month during the 10 month period Au-

ust 2013–May 2014. Therefore, this returned 50 different datasets

or the 10 minute interval currency pairs. Therefore, our experi-

ents were conducted over a total of 255 different datasets . 

To increase comprehensibility, we divide this section in the fol-

owing way: Section 6.1 presents results for the tick data dataset

GBP/JPY), Section 6.2 presents results for the 10 minute inter-

al datasets, Section 6.3 presents the computational time results

or the algorithms, and Section 6.4 discusses the results. In addi-

ion, Sections 6.1 and 6.2 are futher divided into two Sections 6.1.1,

.1.2 , and 6.2.1, 6.2.2 , respectively. Sections 6.1.1 and 6.2.1 present

 comparison among the DC algorithms only (i.e. SDC, SDC EVO ,

DC, MDC EVO , and DC+GA), in order to identify the best DC setup;

ections 6.1.2 and 6.2.2 present results among the best DC algo-

ithm and the two physical-time financial benchmarks (i.e. BH and

DDIE). 

In addition, we would like to remind the reader that the goal

f our experiments is threefold: (i) demonstrate that the paradigm

a

f DC returns profitable strategies, (ii) provide evidence that the

C strategies optimised by the GA are more profitable than using

tandard DC strategies, and (iii) demonstrate that our GA gener-

ted strategies outperform typical physical-time based strategies,

amely technical analysis and buy and hold. We demonstrate the

ulfilment of (i) and (ii) in Sections 6.1.1 and 6.2.1 . We demonstrate

he fulfilment of (iii) in Sections 6.1.2 and 6.2.2 . 

Lastly, when an algorithm yields positive return, we will also

e commenting on its MDD performance, as an indicator of down-

ide risk. 5 In this way, we make a detailed analysis on both per-

ormance metrics (return, MDD), which offers a more holistic view

n the results of the trading algorithms. 

.1. Tick data results 

.1.1. Comparison among the DC algorithms 

Since each algorithm was tested on a daily basis (excluding

eekends) over the 10-month period, we can calculate the daily

eturn for each algorithm. Fig. 7 presents the box and whisker plot

or each DC algorithm. As we can observe, SDC, MDC, and MDC EVO 

nd DC+GA show results with very low variance, as all of them are

oncentrated around the mean that seems to be a value near and

bove zero. On the other hand, SDC EVO experiences high variance

nd many extreme values, both positive and negative. 

These results are summarised in Table 3 . What we can ob-

erve is that only MDC EVO and DC+GA have positive mean daily

eturn over the 10 month period. We can also observe that their

ean returns are relatively close, as MDC EVO ’s return is 0.0677%
 trader would not consider at all a trading algorithm that yields negative returns. 
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Table 3 

Mean return results for each DC algorithm. Tick data for GBP/JPY. Results 

shown in % values. 

SDC SDC EVO MDC MDC EVO DC+GA 

Mean −0 .0053 −5 .6975 −0 .0092 0 .0677 0 .0730 

StandDev 0 .0536 25 .296 0 .1069 0 .3673 0 .3942 

Max 0 .0963 90 .170 0 .1820 1 .1684 1 .2587 

Min −0 .3873 −136 .18 −0 .7751 −1 .1750 −1 .3742 

Table 4 

Mean return results for EDDIE and 

DC+GA under GBP/JPY’s tick data. 

BH’s return (not included in the table, 

as it does not do daily trading) was 

−0.1164. 

EDDIE DC+GA 

Mean −0 .1918 0 .0730 

StandDev 0 .3732 0 .3943 

Max 0 .929 1 .26 

Min −2 .01 −1 .37 
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and DC+GA’s is 0.0730%. We should note here that while these re-

turn values are relatively low, the reader should keep in mind that

trading takes place on a daily basis. Thus, an average daily mean

return of the scale of 0.0730% will have a significant cumulative ef-

fect in the long run. This is further demonstrated in Section 6.1.2 ,

when we present and discuss with equity curve for DC+GA. 

To investigate whether there is a statistical significance be-

tween MDC EVO and DC+GA, we ran the Kolmogorov–Smirnoff non-

parametric test, with the null hypothesis being that the data from

these two algorithms come from the same continuous distribution.

The test showed that indeed they both come from the same distri-

bution with a p-value of 0.9638, thus the difference in the mean

values is not statistically sigificant. In addition, we look into the

maximum drawdown (MDD) values for these two algorithms, to

get insight on the downside risk of the trading strategies gener-

ated by each algorithm. The average value for MDC EVO is 0.4156%,

whereas DC+GA’s value is slighly higher, at 0.4251%, showing that

both algorithms’ strategies have similar downside risk. We further

explore the effect of this risk in the next section, when we present

the average daily return and its fluctuations. 
Fig. 8. Day-to-day average return for the DC+GA strategy for the period Augu
Since DC+GA returned higher mean return, we use this setup

or the comparisons with the physical-time financial benchmarks. 

.1.2. Comparison with physical-time financial benchmarks 

Table 4 presents the mean results for DC+GA and EDDIE. We

hould also note that BH yielded a return of −0.1164%. As we can

bserve from the table, EDDIE also has a negative mean daily re-

urn of −0.1918%. Therefore, DC+GA was the only algorithm among

hese three with a positive daily return. In addition, a two-sample

olmogorov–Smirnov test at 5% significance level returned a p-

alue of 4.7194e-09, and thus showed that DC+GA significantly

utperformed EDDIE. 

To visualise DC+GA’s results, we present the average (over the

0 runs) daily return for the period August 2013 to May 2014 in

ig. 8 . As we can observe, the majority of the days experience a

ositive return. In fact, 58.5% of the tested datasets experienced

 positive return (120 out of the total of 205 days). Furthermore,

ig. 9 presents the equity curve for DC+GA. Equity curve is a graph-

cal representation of the change in value of a trading account over

 time period. An equity curve with a consistently positive slope

ould generally indicate that the trading strategies of the account

re profitable, while a negative slope would indicate that the ac-

ount is losing money. As we can observe, the given equity starts

rom an initial budget of £500K and never drops below this thresh-

ld. It generally follows a positive slope, with the only exception

f around February-March, where there was a decline. Neverthe-

ess, the curve soon returns to its positive slope, demonstrating the

ong-run effectiveness of the trading strategy. 

This concludes the results under tick data, which showed that

C+GA was ranked first among the other DC versions, and also

utperformed the two physical-time financial benchmarks. Next,

e present results under the 10 min interval data. 

.2. 10 minute interval data results 

This section presents results for the 10-minute interval data for

he five currency pairs: EUR/GBP, EUR/JPY, EUR/USD, GBP/CHF, and

BP/USD. We start again by presenting results for the DC algo-

ithms only, in Section 6.2.1 . After identifying the best DC setup,

e move on to Section 6.2.2 , where we compare this best DC setup

ith BH and EDDIE. 
st 2013 to May 2014 for GBP/JPY’s tick data. Results shown in % values. 
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Fig. 9. Equity curve for the DC+GA strategy for the period August 2013 to May 2014 for GBP/JPY’s tick data. 
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.2.1. Comparison among the DC algorithms 

Table 5 presents the return results for each month, for each DC

lgorithm, under the 10 minute interval data, for each currency

air. Overall, each DC algorithm appears to be able to show pos-

tive returns for each currency pair. SDC and SDC EVO are the two

lgorithms with the highest frequency of positive returns. Out of

he 10 months tested per currency pair, SDC had 7 positive returns

or EUR/GBP, 6 positive returns for EUR/JPY, 7 positive returns for

UR/USD, 5 positive returns for GBP/CHF, and 3 positive returns for

BP/USD. Similarly, SDC EVO ’s number of positive returns were 6, 5,

, 6, and 4. 

Table 6 summarises these results. In terms of currency pairs, it

ppears that EUR/GBP is the easiest to predict, as all algorithms

howed non −negative returns. On the other hand, all other cur-

ency pairs had two to three currency pairs with negative returns.

verall, SDC and MDC experience again, as with the tick data, a

egative mean return. On the other hand, SDC EVO , MDC EVO and

C+GA experience positive mean returns, with values close to each

ther (0.01064%, 0.00875%, and 0.01046%). It thus appears that

hese three algorithms have similar performance. Once again, we

ould like to note that while these returns appear to be low, their

umulative effect can be much higher when trading over all 50

atasets available for the 10 minute interval data. 

To further investigate the algorithms’ performance, we applied

riedman’s non-parametric statistical test to compare multiple al-

orithms. We present the results in Table 7 . For each algorithm,

he table shows the average rank according to the Friedman test

first column), and the adjusted p-value of the statistical test when

hat algorithm’s average rank is compared to the average rank of

he algorithm with the best rank (control algorithm) according to

he Hommel post-hoc test (second column) ( Demšar, 2006; Gar-

ía & Herrera, 2008 ). As we can observe from the Friedman test,

here is no statistical significance between SDC EVO and DC+GA at

he α = 0 . 05 level. Also, there is no statistical significance between

DC EVO and MDC EVO at the α = 0 . 05 level, but there is a statistical

ignificance at the α = 0 . 10 level. 

Lastly, we compare the MDD results over the three algo-

ithms that yielded positive mean return (i.e., SDC EVO , MDC EVO , and

C+GA). DC+GA and MDC EVO have the lowest mean MDD values,

.03789% and 0.03308%, respectively; on the other hand, SDC EVO ’s

ean MDD value is higher, at 0.05251%. Overall, all algorithms

howed very low MDD values. One interesting observation that can

e made is that while SDC EVO returned the highest mean return, as
 b  
e saw in Table 6 , it also returned more volatile trading strategies.

his is mainly because of the much higher MDD value for EUR/JPY

n Table 8 (0.22863% for SDC EVO , against 0.12386% and 0.14274%

or MDC EVO and DC+GA, respectively). Nevertheless, since SDC EVO 

anked first in terms of mean return, we are going to be using it

ith the comparisons with the physical-time financial benchmarks.

.2.2. Comparison with physical-time financial benchmarks 

Table 9 presents the mean return for EDDIE and SDC EVO un-

er the 10-minute interval datasets (for completeness, we also

resent the month-by-month return results in the Appendix in

able A.11 ). We should also note that BH’s average return was

.01274%. As we can observe, EDDIE has again a negative mean re-

urn of −0.00873%; it is also worth noting that for all five currency

airs EDDIE’s mean return is negative. On the other hand, SDC EVO 

as a positive return for three currency pairs: EUR/GBP, EUR/JPY,

nd EUR/USD. Overall, SDC EVO ’s mean return is 0.01064%. A two-

ample Kolmogorov-Smirnov test for EDDIE and SDC EVO returned a

-value of 0.0560, showing that there is a statistical significance

etween these two algorithms at the 10% significance level. How-

ver, the fact that EDDIE returned a negative mean return means

hat it would not be attractive to an investor as a trading algo-

ithm. This leads us to argue that SDC EVO outperforms EDDIE, while

t returns a similar average return with BH. 

.3. Computational times 

Table 10 presents the average computational times per run for

ll algorithms. SDC, MDC, and BH are deterministic algorithms and

re thus very fast in executing (around 1 second). All other al-

orithms have their execution times varying between 10 seconds

nd 55 seconds. Thus, all algorithms have relatively fast execution

imes. As we can see, DC+GA ranks third in terms of computational

ost, but we believe that this slower execution time is justified

y the improvements in the algorithm’s mean return performance.

esides, all these are very minor differences, especially after tak-

ng into account that the current forecasting application is an off-

ine problem. Lastly, evolutionary algorithms can be easily paral-

elised since each individual (trading strategy) builds and evalu-

tes a candidate solution independently from all other individuals

n the population. Therefore, a large speed up could be obtained

y running a parallel version of any evolutionary DC version, as it
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Table 5 

Monthly return results for each DC algorithm. 10-minute interval data. Results presented per currency 

pair, in % values. 

SDC SDC EVO MDC MDC EVO DC+GA 

EUR/GBP August 0 .0 0 0 0 04 −0 .005459 0 .0 0 0 012 −0 .007698 −0 .009455 

September −0 .0 0 0 014 −0 .004532 −0 .0 0 0 032 −0 .003943 −0 .002992 

October 0 .0 0 0 0 07 0 .002058 0 .0 0 0 011 −0 .0 0 0974 −0 .001070 

November 0 .0 0 0 0 02 0 .002844 0 .0 0 0 0 07 0 .001022 0 .002826 

December 0 .0 0 0 0 01 0 .013137 0 .0 0 0 0 01 0 .007134 0 .006939 

January 0 .0 0 0 0 05 −0 .0 0 0 073 0 .0 0 0 010 0 .004246 0 .004940 

February 0 .0 0 0 0 04 0 .0 0 0962 0 .0 0 0 0 05 −0 .0 0 0139 0 .0 0 0471 

March −0 .0 0 0 0 03 −0 .002265 −0 .0 0 0 0 09 0 .0 0 0 0 06 −0 .001710 

April 0 .0 0 0 0 01 0 .0 0 0304 0 .0 0 0 0 02 0 .002933 0 .003820 

May −0 .0 0 0 0 01 0 .0 0 0892 −0 .0 0 0 0 01 0 .0 0 0797 0 .0 0 0344 

EUR/JPY August −0 .0 0 0483 0 .155999 −0 .0 0 0490 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 

September −0 .0 0 0433 0 .050100 −0 .001048 0 .001103 −0 .022498 

October 0 .0 0 0209 0 .060285 −0 .0 0 0711 0 .003731 −0 .072743 

November −0 .0 0 0822 0 .0 0 0 0 0 0 −0 .001747 −0 .005446 −0 .001633 

December −0 .003502 −0 .421926 −0 .008150 −0 .084816 −0 .04 946 8 

January 0 .0 0 0647 0 .771926 0 .001547 0 .584600 0 .598602 

February 0 .0 0 0320 −0 .006850 0 .0 0 0485 −0 .004669 −0 .004390 

March 0 .0 0 0395 −0 .118628 0 .0 0 0842 −0 .106838 −0 .085178 

April 0 .0 0 0375 0 .049121 0 .0 0 0679 0 .015529 0 .057428 

May 0 .0 0 0460 0 .040874 0 .001183 0 .062574 0 .064694 

EUR/USD August −0 .0 0 0 010 0 .001232 −0 .0 0 0 022 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 

September 0 .0 0 0 0 03 0 .001880 0 .0 0 0 0 04 −0 .0 0 0 063 −0 .0 0 0 062 

October 0 .0 0 0 016 −0 .007077 0 .0 0 0 030 −0 .005307 −0 .003792 

November −0 .0 0 0 0 01 −0 .0 0 0 073 −0 .0 0 0 0 02 −0 .001359 −0 .001942 

December 0 .0 0 0 0 02 −0 .005356 0 .0 0 0 0 07 −0 .007442 −0 .008586 

January 0 .0 0 0 024 0 .014046 0 .0 0 0 052 0 .024 84 9 0 .018826 

February 0 .0 0 0 010 −0 .0 0 0601 0 .0 0 0 029 −0 .0 0 0359 −0 .004705 

March 0 .0 0 0 0 01 0 .003289 0 .0 0 0 0 03 0 .001864 0 .004594 

April −0 .0 0 0 0 01 −0 .006851 −0 .0 0 0 0 09 −0 .014233 −0 .016055 

May 0 .0 0 0 0 03 0 .0 0 0756 0 .0 0 0 0 08 0 .0 0 0176 0 .0 0 0430 

GBP/CHF August 0 .0 0 0 0 07 −0 .004584 0 .0 0 0 0 09 −0 .0 0 0334 0 .0 0 0 061 

September 0 .0 0 0 0 0 0 −0 .014025 0 .0 0 0 0 0 0 −0 .019435 −0 .026564 

October 0 .0 0 0 0 02 0 .002891 0 .0 0 0 0 01 0 .004546 0 .007189 

November 0 .0 0 0 0 04 −0 .002861 −0 .0 0 0 0 08 −0 .0 0 0798 −0 .0 0 0490 

December −0 .0 0 0 0 06 0 .0 0 0477 −0 .0 0 0 010 −0 .001521 −0 .002420 

January −0 .0 0 0 011 0 .0 0 0968 −0 .0 0 0 035 −0 .0 0 0 030 −0 .0 0 0 033 

February 0 .0 0 0 012 0 .009052 0 .0 0 0 024 0 .015172 0 .015056 

March −0 .0 0 0 015 −0 .027585 −0 .0 0 0 026 −0 .032727 −0 .034124 

April −0 .0 0 0 0 01 0 .0 0 0696 −0 .0 0 0 0 06 −0 .0 0 0 063 −0 .0 0 0 0 09 

May 0 .0 0 0 0 02 0 .005771 0 .0 0 0 0 04 −0 .001288 0 .002493 

GBP/USD August −0 .0 0 0 0 04 0 .0 0 0249 0 .0 0 0 0 0 0 −0 .0 0 0863 −0 .0 0 0716 

September −0 .0 0 0 031 −0 .014953 −0 .0 0 0 043 0 .005087 0 .003959 

October 0 .0 0 0 0 01 0 .028377 −0 .0 0 0 0 02 0 .035794 0 .052110 

November −0 .0 0 0 0 01 0 .0 0 0 013 −0 .0 0 0 0 09 0 .0 0 0 0 0 0 0 .0 0 0 0 0 0 

December 0 .0 0 0 0 01 −0 .030266 0 .0 0 0 0 01 −0 .035563 −0 .040706 

January −0 .0 0 0 0 09 −0 .001725 −0 .0 0 0 024 0 .0 0 0107 0 .001240 

February −0 .0 0 0 0 04 −0 .012477 −0 .0 0 0 0 05 −0 .004516 −0 .004187 

March −0 .0 0 0 015 −0 .002918 −0 .0 0 0 026 −0 .012024 −0 .010595 

April 0 .0 0 0 0 0 0 −0 .005678 0 .0 0 0 0 01 −0 .002531 −0 .003123 

May 0 .0 0 0 0 0 0 0 .010379 −0 .0 0 0 0 01 0 .021339 0 .028387 

Table 6 

Mean return results for each DC algorithm. 10-minute interval data. Results 

shown in % values. 

SDC SDC EVO MDC MDC EVO DC+GA 

EUR/GBP 0 .0 0 0 0 0 0 .0 0 079 0 .0 0 0 0 0 0 .0 0 034 0 .0 0 063 

EUR/JPY −0 .0 0 028 0 .05809 −0 .0 0 074 0 .04658 0 .05387 

EUR/USD 0 .0 0 0 0 0 0 .0 0 012 0 .0 0 0 01 −0 .0 0 019 −0 .00125 

GBP/CHF 0 .0 0 0 0 0 −0 .00292 0 .0 0 0 0 0 −0 .00365 −0 .00388 

GBP/USD −0 .0 0 0 01 −0 .00290 −0 .0 0 0 01 0 .0 0 068 0 .00293 

Mean −0 .0 0 0 06 0 .01064 −0 .0 0 015 0 .00875 0 .01046 

 

 

Table 7 

Statistical test results according to the non- 

parametric Friedman test with the Hommel’s post- 

hoc test. 10-min interval data. Significant differ- 

ences at the α = 0 . 1 level are shown in boldface. 

Algorithm Average rank Adjusted p Homm 

SDC EVO (c) 1 .86 –

DC+GA 1 .91 0 .80258 

MDC EVO 2 .23 0 .06431 

D  

s  

t  

o  

r  

i  

h  
has actually been shown in Brookhouse, Otero, and Kampouridis

(2014) , where speed ups of up to 21 times were observed. 

6.4. Discussion 

From the above results, we can reach the following conclusions.
C has the potential of returning profitable trading strategies. The

ingle and multi-threshold DC strategies (SDC and MDC) were able

o return profitable strategies, as it is evident from the best results

f Tables 3 and 6 . As we can observe in these tables, all DC algo-

ithms had the maximum return entry as a positive value, which

ndicates that there was at least one instance per algorithm that

ad yielded positive return. However, the SDC and MDC paradigm
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Table 8 

Mean MDD results for each DC algorithm. 

10 minute interval data. Results shown in % val- 

ues. 

SDCevo MDCevo DC+GA 

EUR/GBP 0 .00347 0 .00418 0 .00520 

EUR/JPY 0 .22863 0 .12386 0 .14274 

EUR/USD 0 .00798 0 .01334 0 .01402 

GBP/CHF 0 .01139 0 .0114 0 .01302 

GBP/USD 0 .01107 0 .0126 0 .01449 

Mean 0 .05251 0 .03308 0 .03789 

Table 9 

Mean return results for EDDIE and 

SDC EVO . 10-minute interval data. BH’s 

average return (not included in the ta- 

ble) was 0.01274%. Results shown in % 

values. 

EDDIE SDC EVO 

EUR/GBP −0.00141 0 .0 0 079 

EUR/JPY −0.01644 0 .05809 

EUR/USD −0.00840 0 .0 0 012 

GBP/CHF −0.01114 −0 .00292 

GBP/USD −0.00628 −0 .00290 

Mean −0.00873 0 .01064 

Table 10 

Mean computational times per run for SDC EVO , MDC EVO , 

EDDIE, and DC+GA. SDC, MDC, and BH are deterministic 

algorithms and only take 1 second to execute. 

SDC EVO MDC EVO EDDIE DC+GA 

Tick 18 secs 20 secs 55 secs 45 secs 

10 min 10 secs 12 secs 25 secs 20 secs 
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ould not consinstently return profitable strategies and thus their

ean returns were negative. So it was evident to us that while DC

s a promising method, it would benefit from optimising its param-

ters. 

ptimising DC parameters and weights increases the mean return.

sing a genetic algorithm to optimise the parameters SDC and

DC increased the mean return, leading to a positive mean re-

urn in 3 out of 4 cases. More specifically, under the tick data

 Table 3 ) moving from MDC to MDC EVO increased the mean daily

eturn from −0.0092% to 0.0677%. In addition, under the 10 minute

ata ( Table 6 ), moving from SDC to SDC EVO led to an increase of

ean return from −0.0 0 0 0 6% to 0.010 64%. Similarly, moving from

DC to MDC EVO increased the mean return from −0.0 0 015% to

.00875%. 

Furthermore, optimising the weights of MDC EVO led to the

evelopment of the DC+GA algorithm. DC+GA further improved

he mean return of MDC EVO under the tick data, from 0.0677%

o 0.0730%. Under the 10 minute data, DC+GA again improved

he mean return from MDC EVO ’s 0.00875% to DC+GA’s 0.01046%.

owever, DC+GA had slightly lower mean return from SDC EVO ’s

.01046%. Nevertheless, statistical tests showed that the difference

n DC+GA’s performance and SDC EVO were not statistically signifi-

ant. 

The above leads to us conclude that the introduction of both

arameter and weight optimisation is beneficial to DC algorithms. 

he DC paradigm is able to outperform traditional physical-time fi-

ancial benchmarks. The third and last conclusion we can reach is

hat the DC paradigm is able to outperform traditional physical-

ime financial benchmarks, such as buy and hold (BH) and tech-

ical analysis (EDDIE). In fact, EDDIE never managed to yield pos-

tive returns under the experiments in this work, even though in
he past has been very successful in similar financial problems

 Kampouridis & Otero, 2015; Kampouridis & Tsang, 2010; 2012 ).

n the other hand, BH yielded a negative return under the tick

ata and a positive return under the 10 minute data. In addition,

C+GA significantly outperformed EDDIE under the tick data at the

% level, and SDC EVO significantly outperfomed EDDIE under the

0 minute data at the 10% level. However, SDC EVO is heavily depen-

ent on the single threshold we choose to use, so while sometimes

t can perform very well (10 minute data), some other times it can

erform extremely poorly (tick data). We made a similar observa-

ion for SDC EVO ’s mean MDD value under the EUR/JPY ( Table 8 ),

here it almost doubled the MDD value to its competitors MDC EVO 

nd DC+GA. For this reason, we believe that DC+GA is a better al-

orithm, as it is more robust, i.e., it is more consinstent in terms of

ositive returns and lower MDD. Hence, for completeness we also

un a Kolmogorov-Smirnov test between DC+GA and EDDIE, under

he 10 minute data. The null hypothesis is that they both come

rom the same continuous distribution. The p-value of the test is

.0560, which just misses rejecting the hypothesis at the 5% level,

ut does reject it at the 10% level. 

So, DC+GA is able to significantly outperform EDDIE at the 5%

evel under tick data and at the 10% level under the 10 minute

ata. In addition, DC+GA returned higher mean return than BH un-

er the tick data, and a similar mean return under the 10 minute

ata. We can thus conclude that DC+GA is able to perform at least

s well as BH and outperforms EDDIE. 

To summarise, the above three conclusions demonstrate that

e have successfully met the three goals of this paper: (i) the DC

aradigm returns profitable strategies, (ii) optimising DC strategies

y a GA leads to an increase in profits, and (iii) our proposed algo-

ithm, DC+GA, is able to outperform physical-time financial strate-

ies, such as technical analysis, and buy and hold. 

. Conclusion 

To conclude, this paper used a new way of summarising high-

requency foreign exchange data, and combined it with a genetic

lgorithm for optimising its parameters. We used our proposed

ramework to trade in six different FX markets, and showed that

e are able to not only produce average profitable results, but

lso outperform benchmarks coming from two traditional physical-

ime approaches (technical analysis, buy and hold). We believe that

hese results constitute a very promising start, and that further re-

earch should take place towards this direction. 

More specifically, at the moment, we have focused on the core

heory of directional changes and we have derived strategies based

n that theory. More work could take place in defining new indica-

ors, derived from the concept of directional changes, in a similar

anner that technical analysis indicators exist with physical time.

n addition, in our current approach we allowed for the generation

f multiple thresholds, and then let the GA combine the suggested

ction of each threshold. A potential improvement to this would

e to leave the decision of the generation of thresholds completely

o the optimisation algorithm. For example, the genetic algorithm

ould be further extended to not only generate thresholds at the

eginning of each evolutionary process, but also mutate them, thus

enerate new ones, during the process. This is by far a more dy-

amic technique, which could lead to even better trading results.

astly, we also plan to test our DC+GA algorithm on more data sets

rom the FX market and also from other type of markets, for in-

tance the stock market. 

ppendix A. Monthly return results for EDDIE and SDC EVO 
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Table A1 

Monthly return results for EDDIE and SDC EVO . 10-minute 

interval data. Results presented per currency pair. Results 

shown in % values. 

EDDIE SDC EVO 

EUR/GBP August 0 .004458 −0 .005459 

September 0 .005456 −0 .004532 

October −0 .013644 0 .002058 

November 0 .006171 0 .002844 

December −0 .011072 0 .013137 

January −0 .010316 −0 .0 0 0 073 

February −0 .001960 0 .0 0 0962 

March 0 .007997 −0 .002265 

April 0 .0 0 0799 0 .0 0 0304 

May −0 .002026 0 .0 0 0892 

EUR/JPY August −0 .513460 0 .155999 

September −0 .170211 0 .050100 

October −0 .088246 0 .060285 

November 0 .101843 0 .0 0 0 0 0 0 

December 0 .613728 −0 .421926 

January −0 .548754 0 .771926 

February 0 .033461 −0 .006850 

March 0 .400234 −0 .118628 

April 0 .048707 0 .049121 

May −0 .041675 0 .040874 

EUR/USD August −0 .026099 0 .001232 

September −0 .004 84 8 0 .001880 

October −0 .053083 −0 .007077 

November 0 .004349 −0 .0 0 0 073 

December −0 .0 0 04962 −0 .005356 

January −0 .008512 0 .014046 

February 0 .011698 −0 .0 0 0601 

March −0 .0 0 0885 0 .003289 

April −0 .006766 −0 .006851 

May 0 .0 0 0674 0 .0 0 0756 

GBP/CHF August −0 .019175 −0 .004584 

September 0 .002983 −0 .014025 

October −0 .036008 0 .002891 

November −0 .030220 −0 .002861 

December −0 .019675 0 .0 0 0477 

January 0 .007053 0 .0 0 0968 

February 0 .009592 0 .009052 

March −0 .008943 −0 .027585 

April −0 .002353 0 .0 0 0696 

May −0 .014646 0 .005771 

GBP/USD August 0 .0 0 0832 0 .0 0 0249 

September −0 .009259 −0 .014953 

October 0 .002542 0 .028377 

November 0 .001273 0 .0 0 0 013 

December −0 .020717 −0 .030266 

January 0 .007417 −0 .001725 

February −0 .005826 −0 .012477 

March −0 .029045 −0 .002918 

April −0 .002988 −0 .005678 

May −0 .007080 0 .010379 
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