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Abstract
This report presents a concise review of some frequency estimation and frequency
tracking problems. In particular, the report focusses on aspects of these problems
which have been addressed by members of the Frequency Tracking and Estimation
project of the Centre for Robust and Adaptive Systems.

The report is divided into four parts: problem specification and discussion, associ-
ated problems, frequency estimation algorithms and frequency tracking algorithms.

Part I begins with a definition of the various frequency estimation and tracking
problems. Practical examples of where each problem may arise are given. A com-
parison is made between the frequency estimation and tracking problems.

In Part II, block frequency estimation algorithms, fast block frequency estimation
algorithms and notch filtering techniques for frequency estimation are dealt with.

Frequency tracking algorithms are examined in Part III.

Part IV of this report examines various problems associated with frequency esti-
mation. Associated problems include Cramér-Rao lower bounds, theoretical algo-
rithm performance, frequency resolution, use of the analytic signal and model order
selection.
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Part I

Frequency Estimation and Tracking
Problems

Frequency estimation and tracking problems, algorithms and related topics are discussed
in this report. The aim is to present a concise sketch of these problems, describe current
techniques and indicate loose ends.

In this Part, several estimation and tracking problems are specified and examined.
The two problems to be given most scrutiny in the remainder of the report are single-tone
frequency estimation and single-tone frequency tracking. We discuss the reasons for this
emphasis.

Part II of this report describes several block-processing frequency estimation algo-
rithms, starting with the standard Gaussian, white noise maximum likelihood approach.
Other approaches discussed include the periodogram maximiser, Fourier coefficient in-
terpolation and and sample covariance techniques. Details are then given for some fast
block-processing algorithms which are of interest because of their computational simplic-
ity.

The Part concludes with the examination of several notch filtering techniques for
frequency estimation. The last of these techniques, that of Nehorai and Porat [1986] may
be used as a frequency tracking algorithm, and so this naturally leads on to Part III where
several frequency tracking algorithms are examined.

Further issues such as use of the analytic signal, frequency resolution and model order
reduction are canvassed in Part IV.

Rather than list the possible future directions for research on these topics out of
context, areas where further work is required are indicated throughout the report.

1 The Frequency Estimation Problem

There are three main parameter estimation problems which involve frequency estimation:

• Single tone frequency estimation: where the signal is a single, constant-frequency
sinusoid. This is the simplest frequency estimation problem.

• Multi-harmonic frequency estimation: where the signal is composed of the sum of
harmonically related sinusoids. This case is important because rotational or periodic
phenomena rarely generate sinusoidal waveforms.

• Multi-tone frequency estimation: where there are several tones of unrelated fre-
quency present. This problem occurs in the analysis of signals containing emissions
from more than one target.

Each problem assumes a different signal model is to be fitted to measured data. Due
to the large amount of literature available, this discussion will be confined to the first
problem, that of estimating the parameters of a single tone in noise.
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1.1 Single Tone Frequency Estimation

The single tone in noise parameter estimation problem is defined as follows.

Problem 1: Single Tone in Noise
Let {yt} be generated by the model

yt = µ + ρ cos (ω0(t− ν) + φ) + εt (1)

where µ is the mean value, ρ is the signal amplitude, ω0 is the frequency of the signal,
ν = T−1

2
, φ is the initial phase and εt is some zero-mean random noise sequence with

variance σ2.

The single tone in noise problem is then to estimate the real-valued parameters µ, ρ,
ω0, φ and σ2 given only the measurements {yt : t = 0 . . . T − 1}. 2

A related problem is estimation of the parameters in the following signal model:

zt = µ′ + ρ exp i (ω0(t− ν) + φ) + ε′t (2)

where the parameters are as before, except that both µ′ and ε′t are complex-valued. Rife
and Boorstyn [1974] examined this case. For the majority of this report, however, we
shall confine our discussion to the real signal model yt of (1).

Remark 1: The signal model (2) is sometimes referred to as the analytic signal (Ville
[1948]) model. 2

In all of these problems, algorithm selection depends on whether the sample size T
is fixed or increasing. If T is fixed, block-processing algorithms are considered. For T
increasing, on-line algorithms are of interest.

1.2 Multi-harmonic Frequency Estimation

Where frequency information is to be gleaned from acoustic sources such as rotating
machinery, non-linear effects within the generating system often give rise to harmonics
and sub-harmonics of the fundamental mode of interest. In these situations, (1) does
not model the physical situation well, so a signal model which accounts for the added
harmonics should be used.

Such a signal model is given below.

Problem 2: Harmonically-related Tones in Noise
Let {yt} be a multi-harmonic signal modelled by

yt = µ +
p∑

j=1

ρj cos (jω0(t− ν) + φj) + εt (3)

where µ, ν, εt and σ2 are defined as in Problem 1 and ω0 is now the fundamental frequency
of the signal, ρj is the amplitude of the jth harmonic and φj is the initial phase of the jth

harmonic.

The multiharmonic-related tones in noise problem is then to estimate the parameters
µ, ρj, ω0, φj, σ2 and p given only the measurements {yt : t = 0 . . . T − 1}. 2

The papers by Barrett and McMahon [1987], James, Anderson and Williamson [1991a]
and James, Anderson and Williamson [1991b] examine the multiharmonic frequency es-
timation problem.
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1.3 Multi-tone Frequency Estimation

In certain environments, several tonal sources of differing frequencies may be present in
the one signal. While, in some cases, it may be possible to apply single-tone techniques in
this situation, it is more desirable to account for the extra problem complexity by altering
the signal model.

The multiple tones in noise problem is defined as follows.

Problem 3: Multiple Tones in Noise
Let {yt} be a multi-tonal signal modelled by

yt = µ +
p∑

j=1

ρj cos (ωj(t− ν) + φj) + εt (4)

where µ, ν, εt and σ2 are defined as in Problem 1 and ωj is now the frequency of the jth

signal component, ρj is the amplitude of the jth tone and φj is the initial phase of the jth

tone.

The multiple tones in noise problem is then to estimate the parameters µ, ρj, ωj, φj,
σ2 and p given only the measurements {yt : t = 0 . . . T − 1}. 2

Hannan [1973] has examined this case and Rife and Boorstyn [1976] have examined
the equivalent complex signal model problem.

1.4 Frequency Estimation

In this report, we shall only examine in detail algorithms for the frequency estimation
problem. The main reason for this is that the added complexity introduced by signal
models (3) and (4) obfuscates some of the key issues by either introducing new problems
or by increasing the dimensionality of the problem.

For instance, use of model (4) instead of (1) means that model order selection now
becomes an issue. We shall discuss this and other issues further in Part IV.

2 The Frequency Tracking Problem

The frequency tracking problem is somewhat more complicated than the estimation prob-
lem. Three physical situations where frequency tracking is of interest are

1. decoding digital information from a frequency-shift keyed bit stream,

2. in demodulation of an FM radio signal and

3. tracking the revolutions per minute of the engine of a manœuvring vessel via acoustic
data.

Each of these three problems may be described by the following general problem state-
ment.
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Problem 4: Frequency Tracking
Let {yt} be modelled by

yt = µ + ρ cos

(
t∑

k=0

ωk + φ

)
+ εt (5)

where ωk is called the instantaneous frequency of the signal and µ, ρ, ν, φ, εt and σ2 are
as defined in Problem 1.

The frequency tracking problem is then to estimate the signal parameters µ, ρ, φ and
σ2 and the sequence {ωk} given only the measurements {yt : t = 0 . . . T − 1}. 2

Boashash [1992a] gives a general discussion of the problem of instantaneous frequency
estimation.

Remark 2: The most notable difference between this problem and Problems 1 to 3 is that
the estimation of µ, ρ, φ and σ2 is a parameter estimation problem, whereas estimation
of the sequence {ωk : k = 0 . . . T − 1} is a state estimation problem. 2

Remark 3: The definition of this tracking problem does not immediately suggest an ap-
propriate error measure. In parameter estimation problems it is common to use the least
square error criterion. However, in tracking problems, concepts such as ‘loss of track’ or
‘escape time’ may be of more importance. 2

The escape time for the phase locked loop frequency tracker has been examined by
Dupuis and Kushner [1987].

The three physical situations above may be examined by suitable selection of various
parameters in Problem 4. Because of this different parameter selection, some algorithms
may be more appropriate to apply to certain problems than others.

2.1 Demodulation of Digital Signals

For example, when a frequency-shift keyed bit stream is to be decoded, ωk will be at known
constant values for some duration, which is also perhaps known. While the constant
frequencies are known, the change from frequency to frequency is generally stochastic.

Remark 4: In this situation, hidden Markov models are probably the most appropriate
approach to take due to the discrete nature of process of interest. 2

2.2 FM Demodulation

For the FM demodulation problem, set

ωk = ωc + λk with ωc À λk

where ωc is the carrier frequency and λk is the speech signal to be demodulated. The fre-
quency variation λk may possibly be modelled as an auto-regressive (or linear predictive)
process.

In these cases, the noise is generally fairly small. For instance, because of the effect
of threshold which is characterised by a severe degradation in reception below some noise
level, the signal (or carrier) to noise ratio (SNR) for a commercial (stereo) FM station is
usually required to be

10 log10

ρ

2σ2
> 20dB.
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Remark 5: A major difference between this problem and that of digital signal demodulation
is that here the frequency variation itself is modelled as being stochastic. 2

2.3 Tracking in High Noise

For the manœuvring vessel problem, ωk will be slowly time-varying while, in general, the
noise is large. For the underwater case, the operating signal to noise ratio is generally

10 log10

ρ

2σ2
< −20dB.

Fortunately, because of a priori knowledge of the working environment, only a small band
of known frequencies is generally of interest.

Remark 6: The frequency tracking problem in this situation is thus further constrained to
take place within a known ‘gate’ of possible frequencies. 2

Remark 7: A problem that also needs attention is that of deciding whether or not an
interesting signal is present given knowledge of the background noise. The issues are
called track initiation or detection and track termination and they are of major concern.
2

2.4 Frequency Tracking

Part III of this report examines some particular frequency tracking algorithms, and some
other aspects of the problem are examined in Part IV.

Further Work 1: Methods for allowing a priori information about
the instantaneous frequency law ωk to be used should be examined.

Further Work 2: Block estimators of frequency may be used as
frequency trackers, provided the frequency variation is slow enough
over the length of the data. Bounds on the performance of block
and on-line techniques, for a given amount of frequency variation
(specified either stochastically or deterministically), would allow
direct comparisons between such techniques to be made.

Multi-harmonic and multi-tone extensions of Problem 4 may also be defined, however
they are not discussed here as this will overly complicate the problem.
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Part II

Frequency Estimation Algorithms

We shall categorise frequency estimation algorithms as follows:

1. block estimators, where the frequency estimate is obtained for a fixed sample size
T in O(T log T ) or more floating point operations,

2. fast block estimators, where the sample size is again fixed, but the number of oper-
ations required is O(T ), and

3. on-line estimators, which allow recursively updated frequency estimates to be gen-
erated.

This last class of estimators is of particular interest, because they may be more amenable
to extension to the frequency tracking problem that the block-processing methods. The
block-processing methods may only be used for tracking when it is known that the instan-
taneous frequency of the signal does not change significantly over known time periods.

1 Block Frequency Estimators

There are several approaches to frequency estimation, given a data set of fixed length T .
We start by examining the maximum likelihood approach.

1.1 The Maximum Likelihood Estimator of Frequency

When εt is Gaussian with covariance Rεε the maximum likelihood estimator (MLE) of
frequency is simply the maximiser of the likelihood function given by

L(θ) =
1

(2π)
T
2

√
|Rεε|

exp(−(Y − Ŷ (θ))T R−1
εε (Y − Ŷ (θ))

2
)

|A| is the determinant of the matrix A, Ŷ (θ) = [ŷ0 ŷ1 . . . ŷT−1] and θ′ = [µ ρ ω φ] with

ŷt = µ + ρ cos (ω(t− ν) + φ)

with Y the vector of the noisy measurements. Equivalently, the maximiser of the log-
likelihood function

`(θ) = −T

2
ln(2π)− 1

2
ln(|Rεε|)− (Y − Ŷ (θ))T R−1

εε (Y − Ŷ (θ))

2
. (6)

may be used. If the εt are white, then Rεε = I and maximising (6) is equivalent to
minimising

T−1∑

t=0

(yt − ŷt)
2
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which is just the least-square error between the data sequence {yt} and the model sequence
{ŷt}.

These functions are usually maximized using a Newton method (Starer and Nehorai
[1992]).

1.2 Approximate Maximum Likelihood Techniques

1.2.1 The Maximiser of the Periodogram

For the case when the complex signal model of (2) is used, and when ρ and φ are unknown
and estimated using

ρ̂eiφ̂ =
T−1∑

t=0

yte
−iω̂0t

then the maximum likelihood frequency estimate is equivalent to setting

ω̂P = max
ω
|

T−1∑

t=0

yte
−iωt|2

= max
ω

Iy(ω)

where Iy is the periodogram of the yt.

For the real signal model of (1), then this equivalence is only asymptotically (T →∞)
true. Hannan [1973] has examined this case and shown that,

T 3/2(ω̂P − ω0) ∼ N(0, 48πρ−2fε(ω0))

where fε(ω0) is the spectral density of εt at the true frequency.

Due to the highly non-linear nature of this problem and the many local maxima of Iy,
an initial frequency estimate at least as close as

|ω̂i − ω0| = O(T−ε) with ε > 1

is needed (Quinn and Fernandes [1991]) if a Gauss-Newton function maximisation tech-
nique is used.

Remark 8: Quinn and Fernandes [1991] noted that the length T fast Fourier transform of
{yt} only yields an initial estimate with

|ω̂i − ω0| = O(T−1)

which is not close enough to guarantee convergence of the Gauss-Newton iteration. 2

1.3 Fourier Coefficient Techniques

There are several algorithms which rely on the phase and magnitude of the maximum
modulus complex Fourier coefficient. Such techniques are useful because they are generally
computationally simple. The most computationally intensive operations needed are a fast
Fourier transform and a size T search to find the maximum modulus coefficient.

Remark 9: The variance performance of such estimators approaches that of the maximum
likelihood estimator of frequency, with significantly less computational cost. 2
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1.3.1 Fourier Coefficient Interpolation Methods

Quinn [1992b] has devised the following Fourier coefficient interpolation frequency esti-
mation algorithms.

1. Put k̂ equal to the maximiser of the discrete-frequency periodogram

k̂ = arg max
k

Iy(2πk/T ).

2. Put

α̂+1 = <
(
Iy(2π(k̂ + 1)/T )/Iy(2πk̂)

)
δ+1 = −α̂+1/(1− α̂+1)

α̂−1 = <
(
Iy(2π(k̂ − 1)/T )Iy(2πk̂)

)
δ−1 = α̂−1/(1− α̂−1)

where <(·) indicates the real part of the argument.

3. To form the first estimator, ω̂FTI1, if δ+1 and δ−1 are both positive, set δ = δ+1.
Otherwise set δ = δ−1. Then

ω̂FTI1 = 2π(k̂ + δ)/T.

4. To form the second estimator, ω̂FTI2, put

δ = (δ+1 + δ−1)/2 + τ(δ2
+1)− τ(δ2

−1)

with

τ(x) =
1

4
log(3x2 + 6x + 1)−

√
6

24
log





x + 1−
√

2
3

x + 1 +
√

2
3





then set
ω̂FTI2 = 2π(k̂ + δ)/T.

Remark 10: Quinn [1994] has developed central limit theorems for both estimators. As the
second technique finds that nonlinear function of δ+1 and δ−1 which minimises the mean
square error, it is not surprising that ω̂FTI2 has the smaller mean square error. 2

1.3.2 The Generalised Phase Interpolation Estimator

When it is desired to use block-processing techniques to track a slow variation in frequency,
McMahon and Barrett [1986] have described a frequency estimation technique which uses
the maximal Fourier coefficients from adjacent (possibly overlapping) time-blocks.

The method proceeds as follows.

1. Form the length R discrete Fourier Transforms at frequency ω:

A =
R−1∑

t=0

yte
iωt B =

R−1∑

t=0

yt+V eiωt

where ω has been chosen to be close to the frequency to be estimated and V is the
offset between the two time blocks.
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2. Calculate
δ = arg(B)− arg(A)

3. The estimator is then given by

ω̂PIE = (δ + 2πn)/V.

The phase ambiguity, 2πn/V , may be resolved by choosing another offset V ′, re-
computing ω̂′PIE and selecting n and n′ so that |ω̂PIE − ω̂′PIE| is as small as possible.

Remark 11: McMahon and Barrett [1987] have extended this technique to the multi-tone
case and have used this extension to perform multi-component frequency tracking. 2

1.4 Sample Covariance Methods

There are several frequency estimation methods available which rely on maximizing a
signal spectral estimate other than the periodogram. Thus they may also be considered
to be approximate maximum likelihood techniques. These spectral estimates are arrived
at via the eigensystem decomposition of the M ×M sample Toeplitz covariance matrix
of the sequence {yt}:

R̂yy =




r̂yy(0) r̂yy(1) . . . r̂yy(T − 1)

r̂yy(1) r̂yy(0)
. . .

...
. . . . . . r̂yy(1)

r̂yy(T − 1) r̂yy(1) r̂yy(0)




(7)

where

r̂yy(m) =
1

T

T−1−|m|∑

t=0

ytyt+m m = 0, . . . , M − 1 (8)

is the biased covariance estimator where y indicates the complex conjugation of y. The
biased estimator is used to ensure that R̂yy is non-negative definite.

The Bartlett spectral estimate may be written

PBar(ω) = v∗(ω)R̂yyv(ω) (9)

where v(ω) = [1 exp(iω) exp(i2ω) . . . exp(i(N − 1)ω)]T and v∗ indicates the complex con-
jugate transpose of the vector v. Note that if M = T then this estimate is the same as
the periodogram spectral estimator. Another popular spectral estimator is the minimum
variance (Kay [1988, page 428]) spectral estimator given by

PMV(ω) =
1

v∗(ω)R̂−1
yy v(ω)

. (10)

The various signal subspace and noise subspace approaches substitute rank-reduced
approximations or rescalings of the sample covariance matrix R̂yy (or its inverse), into (9)
or (10). Both Kay [1988] and Marple [1987] give accounts of these types of spectral (and
the associated frequency) estimators.
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Given an eigenvector decomposition of the full-rank R̂yy:

R̂yy =
M∑

k=1

λkeke
∗
k,

where |λk| > |λk+1| and ek is the eigenvector associated with λk, then the various methods

use the following approximations of R̂yy.

1.4.1 Signal Subspace Methods

The signal subspace methods use the eigenvectors of R̂yy corresponding to the p largest
modulus eigenvalues (maximal eigenvectors) are used, where p is the number of sinusoids
that are assumed to be present.

Minimum Variance The principle component minimum variance spectral estimator is
formed by substitution of

R̂−1
MV =

p∑

k=1

1

λk

eke
∗
k.

into (10).

Bartlett The principle component Bartlett spectral estimator is found by substituting

R̂Bar =
1

M

p∑

k=1

λkeke
∗
k.

into (9).

1.4.2 Noise Subspace Methods

The noise subspace methods use the M − p minimal eigenvectors of R̂yy to form an
approximate inverse covariance matrix. Equation 10 is then maximised over ω to find the
frequency estimates.

Pisarenko’s Method Pisarenko harmonic decomposition (PHD) (Pisarenko [1973]) uses
a sample autocovariance matrix of size p + 1 × p + 1. The approximate inverse
covariance matrix for this method is

R̂−1
Pis = ep+1e

∗
p+1.

MUSIC The multiple signal classification (MUSIC) is a generalization of the Pisarenko
approach which sets M greater than p + 1 so that

R̂−1
MUSIC =

M∑

k=p+1

eke
∗
k.
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Choice of wt

Author wt t = 1, . . . , T − 1

Lank, Reed and Pollon [1973] 1
T−1

Kay [1989] 6t(T−t)
T (T 2−1)

Lovell and Williamson [1992] 6t(T−t)
T (T 2−1)|zt||z∗t−1|

Clarkson, Kootsookos and Quinn [1994] sinh(Tθ)−sinh(tθ)−sinh((T−t)θ)

(T−1) sinh(Tθ)−2 sinh( 1
2
Tθ) sinh[ 1

2
(T−1)θ]/ sinh( 1

2
θ)

where θ = ln
(
1 + σ2

ρ2 +
√

σ4

ρ4 + σ2

ρ2

)

Table 1: Proposed choices of window function, wt.

Remark 12: Unfortunately, most of the estimators of frequency obtained using these meth-
ods are not asymptotically efficient. As the noise subspace methods tend to perform par-
ticularly badly (see, for example, Kay [1988, Figure 13.6 ] for a comparison) and because
most are computationally intensive, these methods will not be closely examined in this
report. 2

Remark 13: For the (complex) single tone case, Pisarenko’s method is of interest, because
here M = 2 and all that is required is to find the roots of a quadratic polynomial. Hence,
while this method is statistically inefficient it is very fast to calculate, and so the estimate
it produces may be used to initialise other algorithms. 2

2 Fast Block Frequency Estimators

Many of the techniques discussed previously can be recast to work with the signal model
of (2). Use of this model also allows another class of estimator to be defined: the weighted
phase averaging frequency estimators.

These estimators are of interest because they may be performed in O(T ) floating point
operations, and so may be considered for use instead of on-line methods in the frequency
tracking problem.

The weighted linear predictor form of frequency estimator is given by

ω̂0 = arg

(
T−1∑

t=1

wtztz
∗
t−1

)

where wt is some window function and arg(z) indicates finding the phase (argument) of
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the complex-valued z. Several different estimators may defined by different selection of
the window function wt. Table 1 gives a list of possible choices of wt.

Lovell and Williamson [1992] introduced the signal-dependent form of wt, while Clark-
son, Kootsookos and Quinn [1994] showed how a class of windows, which depend on the
SNR, may be generated. For high SNR, the SNR-dependent window is equivalent to Kay’s
window and for low SNR the SNR-dependent window becomes the rectangular window
of Lank, Reed and Pollon [1973].

Other possible phase-related estimators are the weighted phase averagers of the form
(Kay [1989])

ω̂0 =
T−1∑

t=1

wt [arg (zt)− arg (zt−1)] .

Quinn [1992a] has shown that, where εt is Gaussian and wt is not signal dependent, the
weighted phase averaging form yields biased estimates of frequency. As a result, we will
not examine these estimators. Clarkson [1992] has proposed a modification to Kay’s
estimator which adaptively attempts to circumvent this bias.

Further Work 3: The statistical efficiency claimed of their estima-
tor by Lovell and Williamson [1992] must be reconciled with the
lack of statistical efficiency of the estimators examined in Clarkson,
Kootsookos and Quinn [1994].

3 Notch Filtering Techniques

Given a {yt} of the form (1), then the yt also satisfy

yt − 2 cos(ω0)yt−1 + yt−2 = εt − 2 cos(ω0)εt−1 + εt−2.

This ARMA(2,2) equation system involves pole-zero cancellations, and so its solution is
not well defined.

There are several techniques which use this approach (Bhaskar Rao and Kung [1984];
Fernandes, Goodwin and de Souza [1987]; Nehorai and Porat [1986]; Quinn and Fernandes
[1991]).

3.1 Off-line Filtering Techniques

While the techniques of Fernandes, Goodwin and de Souza [1987], Quinn and Fernandes
[1991] are not on-line filtering techniques, they are examined here because they have much
in common with the on-line methods of Hannan and Huang [1993] and Nehorai and Porat
[1986].

3.1.1 The Technique of Fernandes, Goodwin and de Souza

The Fernandes, Goodwin and de Souza [1987] frequency estimation technique is described
as follows.

15



1. Set j = 1 and let ht,j = δt be the impulse response of a filter Hj(ω) where δt is the
Kronecker delta.

2. Set yf
t,j = ht,j ∗ yt for t = 0, . . . , T − 1 where ∗ denotes convolution.

3. Using yf
t,j, obtain âj an estimate of 2 cos(ω0) using equation error based least squares.

If |âj − âj−1| is small enough, set ω̂ = cos−1(âj/2) and terminate the algorithm.
Otherwise, continue.

4. Construct a new filter, Hj+1(ω), the passband of which is highly likely to contain
the true frequency. Set ht,j+1 equal to the impulse response of this filter.

5. Increment j and go to step 2.

Remark 14: The frequency estimate obtained via the equation error based least squares
technique is biased, however Fernandes, Goodwin and de Souza [1987] bound this bias.
This bound is used to set the bandwidth of the filter new filter Hj+1(ω). 2

For the technique to converge, the bandwidth of the filters Hj(ω) must be shown to
decrease at each iteration. Conditions under which this is achieved are given in Lemma 4.2
of Fernandes, Goodwin and de Souza [1987]. An approach which also uses the idea of
bandwidth contraction is described by Yakowitz [1992].

Remark 15: The filters , Hj(ω), may be any bandpass filter with the appropriately selectable
passband specifications, e.g. Butterworth filters. 2

While some results are given for the variance of this estimator, a similar technique
described by Quinn and Fernandes [1991] allows easier derivation of a central limit theorem
for the estimator.

3.1.2 The Technique of Quinn and Fernandes

Quinn and Fernandes [1991] have suggested estimating the parameters α and β in the
following equation:

yt − βyt−1 + yt−2 = εt − αεt−1 + εt−2.

subject to α = β. The algorithm proceeds as follows (from Quinn and Fernandes [1991]):

1. Set α = α1 = 2 cos(ω̂i) where ω̂i is some initial estimate of ω0 and set j = 1.

2. Filter the data to produce ζt,j

ζt,j = yt + αjζt−1,j − ζt−2,j; t = 0, . . . , T − 1

where ζt,j = 0 for t < 0.

3. Form βj by regressing (ζt,j + ζt−2,j) on ζt−1,j

βj =

∑T−1
t=0 (ζt,j + ζt−2,j)ζt−1,j∑T−1

t=0 ζ2
t−1,j

4. If |αj − βj| is small enough, set ω̂0 = cos−1(1
2
βj) and terminate. Otherwise, put

αj+1 = βj, increment j and go to step 2.
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Figure 1: Plot of µT (ω) as a function of frequency.

The algorithm may be interpreted (Quinn, Hannan and Huang [1993]) as finding a
local maximum of the “smoothed periodogram” nearest ω̂i. The function maximised is

κ(ω) =
∫ π

−π
Iy(λ)µT (ω − λ)dλ

where

µT (ω) =
T−1∑

k=1

k−1 cos(kω).

An example of µT (ω) for T = 16 is plotted in Figure 1.

Remark 16: The maximiser of κ has the same central limit theorem (Theorem 3 of Quinn
and Fernandes [1991]) as the periodogram maximiser:

T 3/2(ω̂0 − ω0) ∼ N(0, 48πρ−2fε(ω0))

where fε(ω0) is the spectral density of the noise at the true frequency. 2

Remark 17: The number of iterations required for convergence is small if a good initial
estimate is used. For example, if ω̂i is the discrete frequency periodogram maximiser, then
only 2 or 3 iterations are generally sufficient. 2

Remark 18: Due to the smoothing involved, the algorithm is robust to poor initial estimates
ω̂i. Quinn and Fernandes [1991] show via simulation that even using Pisarenko’s frequency
estimate for ω̂i is enough for convergence within 2 to 5 iterations. 2

3.2 On-line Filtering Techniques

Filtering techniques are of interest because it may be possible to modify them to be on-
line or adaptive. When such techniques are adaptive, it is also possible to use them for
frequency tracking.
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3.2.1 The Hannan-Huang Estimator

Hannan and Huang [1993] noticed that an on-line version of the Quinn-Fernandes esti-
mator may be formulated as follows.

Select a threshold parameter ε. Initialise, with j = 1,

tj = 0 ; α = ω̂i

For t from 0 to T − 1:

1. Set

ζt = eiαζt−1 + yt ; ζ−1 = 0 (11)

ω̂t = arg




t∑

k=tj+1

(ζk + yk)ζk−1




2. Form

Ft(tj) =
1

(t− tj)2
|ζt|2

3. If
Ft(tj) < ε max

tj≤k<t
Fk(tj)

then set j = j + 1, tj = t, α = ω̂t and ζt = 0.

4. Goto step 1.

Remark 19: The reinitiation step is included because for a given value of ∆ = α − ω0,
t− tj (the time from the last reinitiation) must not be too large. 2

Remark 20: From a practical view point, the reinitiation of the algorithm provided by step
3 is needed because the instability of the state update equation (11) means that |ζt| grows
approximately linearly in t. 2

Remark 21: Huang and Hannan [1993] have reformulated their approach to deal with
signals modelled with time-varying frequency as in (5). 2

3.2.2 The Technique of Nehorai and Porat

The technique of Nehorai and Porat [1986] (also presented by Nehorai and Porat [1985])
is a recursive prediction error (Ljung and Söderström [1983]) approach for multi-harmonic
frequency estimation. A simpler version modified for the single tone case is as follows.

We are given a noisy sinusoidal sequence, {yt} with yt = 0 for t < 0 and t > T − 1
and an initial frequency estimate ω̂i. When t ≤ 0, set

ω̂t = ω̂i ; ât = −2 cos(ω̂t) ; y′t = yt

φt = 0 ; φ′t = 0 ; ψt = 0

εt = yt ; ε′t = yt ; ε′′t = yt
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and select dynamics for the variables ρt, rt, γt and λt. For t=1 to T − 1 perform the
following recursions.

ω̂t = ω̂t−1 +
γt−1

rt−1

ψt−1εt−1

ât = −2 cos(ω̂t)

y′t = yt − ρ2
t y
′
t−2 − ρtâty

′
t−1

φt = ρtε
′
t−1 − yt−1

φ′t = ρtε
′′
t−1 − y′t−1

ψt = 2 sin(ω̂t)φ
′
t

εt = yt + yt−2 − ρ2
t ε
′
t−2 − φtât−1

ε′t = yt + yt−2 − ρ2
t ε
′
t−2 − φtât

ε′′t = ε′t − ρ2
t ε
′′
t−2 − ρtâtε

′′
t−1

The dynamics of ρt, λt, γt and rt are selected so as to satisfy convergence criteria
set out by Ljung and Söderström [1983]. Nehorai and Porat [1986] selected the following
dynamics.

ρt+1 = ρ0ρt + (1− ρ0)ρ∞
λt+1 = λ0λt + (1− λ0)

γt+1 = γt/ [γt + λt+1]

rt+1 = rt + γt+1

[
ψ2

t+1 − rt

]

Remark 22: The parameters ρ0, ρ∞ and λ0 are user selectable. 2

The algorithm approximates εt by

ε̂t = ht ∗ yt

where ∗ indicates convolution and ht is (approximately) the impulse response of the filter

H(z) =
1− 2 cos(ω̂t)z

−1 + z−2

1− 2ρ cos(ω̂t)z−1 + ρ2z−2
.

where ρ is typically close to, but less than unity, to ensure the stability of H(z). The
parameter estimate ω̂t is updated so as to reduce

T−1∑

t=0

ε̂2
t .

Remark 23: Nehorai and Porat claim that their algorithm is asymptotically statistically
efficient, however the only proof offered is the statement that their algorithm satisfies
constraints provided by Ljung and Söderström [1983] which ensure the required result. 2

Further Work 4: A thorough theoretical investigation of the per-
formance of this algorithm for both frequency estimation and fre-
quency tracking is needed.

Remark 24: Since the Nehorai and Porat estimator is already adaptive, it is easily modified
for the frequency tracking application by suitable choice of the tuning parameters. 2
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4 Summary of Frequency Estimation Algorithms

Table 2 summarizes the various frequency estimators we have examined here.

4.1 Block Estimators

Of these estimators, the most attractive would appear to be the estimator of Quinn and
Fernandes [1991], for several reasons. The estimator is unbiased, asymptotically efficient,
requires fewer operations than full maximum likelihood and is more robust to initial
conditions than that algorithm.

4.2 Fast Block Estimators

Of the weighted phase averaging estimators, that proposed by Lovell and Williamson
[1992] has the best performance. The Kay [1989] estimator has similar performance for
small noise levels, but its bias in the presence of unbounded, in particular Gaussian, noise
is a problem.

4.3 On-Line Estimators

Interest in on-line estimators is because of the hope that they may be modified and applied
to the frequency tracking problem. The Hannan-Huang estimator has been so modified
(Huang and Hannan [1993]) and the Nehorai and Porat frequency estimator only requires
a suitable choice of system dynamics to be used as a frequency tracker.
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Frequency Estimator Summary

Paradigm Algorithm Computational Asymptotically
Complexity Achieves

Cramér-Rao
Bound ?

ML and Maximum Likelihood > O(T log T ) Yes
Approximate
ML Periodogram Maximiser > O(T log T ) Yes

Discrete-Frequency
Periodogram Maximiser O(T log T ) No

Fourier FTI1 O(T log T ) No
Coefficient FTI2 O(T log T ) No

GPIE O(T log T ) No

Signal Minimum Variance O(T 3) No
Subspace Bartlett O(T 3) No

Noise Pisarenko O(T ) No
Subspace MUSIC O(T 3) No

Phase Lank-Reed-Pollon O(T ) No
Weighted Kay O(T ) No
Averaging Lovell O(T ) Yes∗

Clarkson O(T ) No

Filtering Fernandes-Goodwin-de Souza O(T ) Yes
Quinn-Fernandes O(T ) Yes
Hannan-Huang N/A N/A
Nehorai-Porat N/A N/A

∗ Further investigation of the asymptotic performance of this algorithm is needed.
N/A : Not applicable to on-line estimators.

Table 2: Summary of Frequency Estimators.
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Part III

Frequency Tracking Algorithms

1 On-line Frequency Trackers

One reason for interest in on-line estimators of frequency is that some applications may not
have access to blocked data and thus require continuously updating frequency estimates.
Our major interest in these estimators is that they may lead to algorithms which tackle
the the problem of frequency tracking or FM demodulation.
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Figure 2: Filter magnitude responses used in the simple ap-
proach.

1.1 A Simple Filtering Approach

A continuous-time, analytic, noiseless, frequency modulated signal may be converted to
an amplitude modulated waveform by differentiation:

z(t) = µ′ + ρ exp
(
i(

∫ t

0
ω(t)dt + φ)

)

d

dt
z(t) = ρω(t) exp

(
i(

∫ t

0
ω(t)dt + φ)

)
.

An envelope detector can then be applied to extract ω(t) from d
dt

z(t).

Similarly, in discrete-time, the differentiation operation may be approximated by pass-
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ing the complex signal

zt = µ′ + ρ exp

(
i(ωct +

t∑

k=0

λk + φ)

)
,

with ωc À λk, through a linear-phase finite impulse response filter with magnitude re-
sponse illustrated in the top diagram of Figure 2.

In the Figure, it is assumed that ωc = π/2. The dotted lines in the top diagram
indicate that the filter gain at ωc is unity, and the dashed line indicates that the slope of
the magnitude response at ωc is also unity.

The modulus of the filtered signal is then taken, and the result passed through a low
pass filter with magnitude response given in the bottom diagram of Figure 2.

1.2 The Extended Kalman Filter

As noted in Remark 2, frequency tracking problems are state estimation (or prediction)
problems — which are routinely solved using Kalman and extended Kalman filters.

With any application of Kalman filtering techniques, a signal model must first be
specified. For example, the following signal model:

x0 =

[
ω
φ

]

xt+1 =

[
1 0
1 1

]
xt +

[
1
0

]
vt

= F xt + Gvt

yt = sin
([

0 1
]
xt

)
+ εt (12)

= sin (l′xt) + εt

with noise variance E[εtεs] = σ2
εδt−s and frequency variance E[vtvs] = σ2

vδt−s

Since the output equation (12) is non-linear, the extended Kalman filter equations

x̂ t|t = x̂ t|t−1 + Lt

[
yt − sin

(
l′x̂ t|t−1

)]

x̂ t+1|t = F x̂ t|t
Lk = Σk|k−1HkΩ

−1
k

Ωk = H ′
kΣk|k−1Hk + σ2

ε

Σk|k = Σk|k−1 − Σk|k−1HkΩ
−1
k H ′

kΣk|k−1

Σk+1|k = FΣk|kF
′ + σ2

vGG′

Hk = l cos
(
l′x̂ t|t−1

)

must be used (see Anderson and Moore [1979, page 195]).

Anderson and Moore [1979, pages 200-204] assume a sampled continuous-time signal
rather than using a wholly discrete model.
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Remark 25: James [1992], Anderson, James and Williamson [1992] and James, Anderson
and Williamson [1991a] have examined augmenting this signal model to take account of
the the multi-harmonic frequency tracking and estimation problems. 2

Remark 26: An aspect of the discrete-time frequency demodulation problem that these
state-space approaches do not generally take into account is that the frequency estimate
can only ever be in the range [0, 2π] for the complex signal case and [0, π] for the real
signal case. 2

Anderson and Moore [1979] and Tam and Moore [1977] give some discussion on this
point. Aspects of discrete-time frequency estimation are also discussed by Lovell, Koot-
sookos and Williamson [1991]. More general estimation problems on the circle are exam-
ined in the series of three papers by Lo and Willsky [1975c] and the two papers of Willsky
[1974b].

For recursive discrete estimation, see the papers by Bitmead [1982], Bitmead and
Anderson [1981] and Bitmead, Tsoi and Parker [1986].

1.3 The Gaussian ‘Sum’ Approach

The extended Kalman filter involves a linearisation of the problem around the current
state, xt. Tam and Moore [1977] and Anderson and Moore [1979] have shown that an
improvement in the demodulation performance of the extended Kalman filter may be
obtained by using a bank of M such filters which are linearised about different points in
the state-space. Each filter in the bank may have

• different initial states, x0,k,

• different frequency variances, σ2
v,k or

• different measurement noise variances, σ2
ε,k.

After all filters are applied to the data several state estimates, x̂ t|t
k are obtained. The

final state estimate is given by

x̂ t|t =
M∑

k=1

αt,kx̂ t|t
k

where

αt,k =
αt−1,kγ

(
yt − sin

(
l′x̂ t|t−1

k
)
, Ωt,k

)

M∑

n=1

αt−1,nγ
(
yt − sin

(
l′x̂ t|t−1

n
)
, Ωt,n

)

and

γ(µ, Σ) =
1

2π
√
|Σ|

exp(−1

2
(x− µ)′Σ−1(x− µ)).

This approach involves approximating a non-Gaussian probability density function by
a sum of Gaussian probability density functions. Such sums of Gaussian densities are
usually referred to as Gaussian mixtures to avoid confusion with the addition of Gaussian
random variables.
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2 Hidden Markov Model Approaches

By imposing much structure on particular estimation problems, hidden Markov models
(HMMs) have been used to good effect in the frequency tracking problem. Two approaches
have been reported: frequency line tracking (Streit and Barrett [1990]) and a phase-
frequency demodulation approach (White [1992]).

Other authors writing about these and similar methods include Barrett and Holds-
worth [1992], Xie and Evans [1991] and Xie and Evans [1993].

Further Work 5: One problem which needs to be addressed and is
associated with the HMM approaches to frequency tracking is that
of automatic model-parameter estimation. Automatic discretisa-
tion selection for the variable to be estimated when that variable is
inherently continuous is another concern that needs to be examined.
Other problems associated with HMMs are discussed by Anderson,
James and Williamson [1992].

3 Summary of Frequency Tracking Algorithms

Frequency tracking procedures not covered in this report include the well-known phase
locked loop (Kelly and Gupta [1972]; Polk and Gupta [1973]) and several of those discussed
in Boashash [1992b]. The maximum likelihood polynomial phase method is one method
described there which should be examined. Some authors see the phase locked loop as a
simplification of the extended Kalman filter approach (James [1992]).

Estimators described by Boashash [1992b] based on time-frequency representations
are extremely computationally intensive, and have been shown by Kootsookos, Lovell and
Boashash [1992] to be arithmetically equivalent to weighted linear predictor techniques.

Remark 27: One technique which may be worth investigation, but which has not been
discussed here, is the probabilistic data association technique of Bar-Shalom and Fortmann
[1988]. This method is of particular interest, because constraints such as track initiation
(Colegrove [1992]) and track termination (Musicki, Evans and Stankovic [1992]) may be
included in the algorithm formulation. 2
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Part IV

Associated Problems

Along with the frequency estimation and tracking problems discussed in Part I , there are
several associated problems which deserve discussion. These other problems include:

• Availability of Cramér-Rao lower bounds on the variance of unbiased parameter
estimators and whether a particular estimator meets these bounds (is statistically
efficient).

• Which performance indicators to use for the frequency estimation and tracking
problems other than statistical efficiency (e.g. threshold onset).

• Whether to use the analytic signal or the real signal and, if the analytic signal should
be used, how best to calculate it given only the real signal.

• Can the frequencies of two close-in-frequency tones be estimated accurately using
frequency estimation algorithms. This is sometimes called the frequency resolution
problem.

• For the multi-harmonic and multi-tone problems, the extra parameter which must
be estimated is p, the model order. The robustness of multi-frequency algorithms
to incorrect estimation of p should be examined.

• As indicated previously, when the frequency tracking problem is to be conducted
in a high noise environment, the problems of track initiation and track termination
become important.

We shall now examine some of these points.

1 Cramér-Rao Lower Bounds

The Cramér-Rao lower bound on the variance of an unbiased estimator of the frequency,
ω̂0 of a signal tone in noise is (see, for example, Rife and Boorstyn [1974])

var(ω̂0) ≥ 12σ2

T (T 2 − 1)ρ2
. (13)

For the multiharmonic frequency estimation problem, Barrett and McMahon [1987] have
derived the analogous bound, which is

var(ω̂0) ≥ 12σ2

T (T 2 − 1)
p∑

k=1

k2ρ2
k

. (14)

Remark 28: Note that the effective signal energy is proportional to
∑p

k=1 k2ρ2
k rather than∑p

k=1 ρ2
k. 2
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Remark 29: If an estimator is unbiased, and its variance approaches the Cramér-Rao
lower bound as the sample size increases, then the estimator is said to be asymptotically
efficient. 2

For the frequency tracking problem, asymptotic efficiency is generally not well de-
fined, for obvious reasons. However, Peleg, Porat and Friedlander [1993] have derived
Cramér-Rao bounds on the variance of instantaneous phase and instantaneous frequency
estimators when the phase is known to be polynomial. The results are extended to the
case of a continuous-phase signal in Peleg, Porat and Friedlander [1993].

2 Performance Indicators

2.1 Performance of Frequency Estimation Algorithms

Several performance indicators, other than asymptotic efficiency, may be of importance
in the evaluation of frequency estimation algorithms. These include estimator bias, small
sample size performance, computational complexity, and the thresholding performance of
the estimators.

Estimator Bias Clearly, if we wish an estimator to be accurate then a major requirement
should be that the estimator be asymptotically unbiased, i.e.

E [ω̂ − ω0] = 0

as the sample size increases (T →∞).

Unfortunately, it may not be obvious under what conditions a particular estimator
is unbiased. For example, Quinn [1992a] has shown that Kay [1989] estimator is
only unbiased when the amplitude of the noise is bounded — a condition which does
not hold under the Gaussian noise assumption.

Small Sample Size Performance In some frequency estimation problems, only a small
number of data points are available. In this case, asymptotic performance is not
pertinent and any algorithm used must perform well on finite sample sizes.

Computational Complexity In real-time applications, the computational complexity
of the algorithm used may be important.

Thresholding Analysis For some estimators it is possible to predict behaviour at all
SNRs accurately.

This last point is particularly important as when the SNR is low, most estimators ex-
hibit the thresholding phenomenon — which represents a marked decrease in performance
for a relatively small change in SNR.

Further Work 6: A major study, incorporating these performance
indicators, of the frequency estimators mentioned in Part II (and
others) needs to be undertaken.

We give a brief account of various analyses which have been performed on some of the
frequency estimation algorithms given in Part II.
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2.1.1 Approximate Maximum Likelihood Frequency Estimator Performance

Rife and Boorstyn [1974] have analysed the performance of the frequency estimator based
on the maximiser of the periodogram. Recently, Quinn and Kootsookos [1994 ] have ob-
tained expressions which are simplified compared to those of Rife and Boorstyn. Figure 3
is a root mean square error versus SNR plot for various sample sizes obtained using the
formulae presented in Quinn and Kootsookos [1994 ].

Another, different, approach is presented in James, Anderson and Williamson [1992a].
Remark 30: Note that Rife and Boorstyn [1974] incorrectly state that they assume that the
imaginary part of the additive noise is the Hilbert transform of the real part. If this were
true, the real and imaginary parts of the noise would be correlated and the noise would
therefore be coloured. 2

The analyses presented by both Rife and Boorstyn [1974] and Quinn and Kootsookos
[1994 ] rely on the assumptions that

• the true frequency being a Fourier frequency (i.e. if the sample size is T then
ω0 = 2πk0/T ) and

• the initial coarse frequency search is conducted over only the Fourier frequencies,
ωk = 2πk/T, k = 0, 1, 2, . . . , T − 1.

If either of these conditions is not met, then a decrease in the effective signal to noise
ratio occurs.

Further Work 7: The analysis of Quinn and Kootsookos [1994 ]
should be extended to the real signal model and the approximate
analytic signal cases.

Karan, Williamson and Anderson [1994] have analysed the case of model mismatch in
the maximum likelihood frequency estimator, when the true signal has a frequency which
is linearly increasing with time.

Further Work 8: The work presented by Karan, Williamson and
Anderson [1994] yields upper bounds on the penalty for assuming
a constant frequency when in fact the signal has a linear frequency
sweep. The bounds are not tight, and another approach, hopefully
yielding tighter bounds, should be found.

James, Anderson and Williamson [1992b] and Williamson et al. [1994] have analysed
the threshold performance of the multi-harmonic maximum likelihood frequency estima-
tor. One of the main thrusts of Williamson et al. [1994] was to show that, for intermediate
SNRs, rational harmonic outliers are the overwhelming mechanism by which the multi-
harmonic maximum likelihood algorithm fails.

Figure 4 shows the theoretically derived and simulated results for the probability of
A. rational harmonic outliers, B. noise-only outliers and C. any outlier. Comparison of
A. and B. shows that, for intermediate SNRs, the rational harmonic outliers have a much
higher probability of occurring than does a noise-only outlier.

Further Work 9: Further work needs to be done to modify the
algorithm to detect and reduce such rational harmonic outliers,
and thereby improve the threshold-region performance of the algo-
rithm.
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Figure 3: Performance curves for the Maximum Likelihood
Estimator of frequency (complex signal case).
The following curves are displayed:

— Theoretical Root Mean Square Error
(RMSE) versus SNR for sample sizes T =
16 (topmost curve), 32, 64, 128, 256, 512
and 1024 (bottom curve).

o Sample RMSE versus SNR for sample size
T = 16. Number of realisations per sample
point is 2000.

x Sample RMSE versus SNR for sample size
T = 1024. Number of realisations per sam-
ple point is 2000.

... constant probability of an outlier curves for
q = 1× 10−4 to q = 1× 10−9
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Figure 4: Outlier probability curves for the multiharmonic
maximum likelihood estimator. The following
curves are displayed:

A. (—) The probabilty of a rational harmonic
outlier versus SNR calcualted theorecti-
cally.

A. (x) The probabilty of a rational harmonic
outlier versus SNR obtained via simulation.

B. (—) The probabilty of a noise outlier ver-
sus SNR obtained theoretically (upper and
lower bounds).

B. (x) The probabilty of a noise outlier versus
SNR obtained via simulation.

C. (—) The probabilty of any outlier versus
SNR obtained theoretically.

C. (x) The probabilty of any outlier versus
SNR obtained via simulation.
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2.1.2 Weighted-Phase Frequency Estimator Performance

Clarkson, Kootsookos and Quinn [1994] have analysed the performance of a class of
weighted-phase frequency estimators, and have shown that such estimators are not asymp-
totically statistically efficient. What can be shown about the variance of such estimators
is that they approach the Cramér-Rao lower bound for fixed sample size and large signal
to noise ratio.

The analysis presented by Clarkson, Kootsookos and Quinn [1994] does not account
for signal dependent (and therefore noise dependent) windows as examined by Lovell and
Williamson [1992]. The analysis of weighted-phase frequency estimators which use signal
dependent window functions presented there indicates that the variance of the estimators
approaches the Cramér-Rao lower bound even for moderate signal to noise ratios.

The simulation studies presented by Lovell and Williamson [1992] suggest better per-
formance of their estimator than those of Kay [1989].

3 The Analytic Signal

Many algorithms for frequency estimation, particularly the weighted phase-averaging tech-
niques, rely upon the signal under analysis being analytic (Ville [1948]). Given that real-
world data is not analytic (complex-valued), there is the issue of how the imaginary part
of an analytic signal is generated and, consequently, how this problem affects statistical
theory based on the analytic signal assumption.

Remark 31: Very few results are available on the statistical effect that estimation of the
quadrature signal has on frequency estimation procedures which assume it is available. 2

Figure 5 displays some simulation results where this effect is examined. The three
frequency modulated signals

yr
t = sin (ω0t + φ) + εt

yh
t = yr

t + iĤ [yr
t ]

yc
t = exp (i(ω0t + φ)) + ε′t

were produced, with εt, the real part and imaginary part of ε′t independent, identically

distributed white Gaussian noise sequences and Ĥ[y] indicating formation of an approx-
imation to the Hilbert transform of y. The appropriate extended Kalman filter formu-
lations of Anderson and Moore [1979, pp. 200–202] were then used to demodulate the
two.

Remark 32: The Figure indicates the improved performance of algorithms which use both
in-phase and quadrature components. 2

Remark 33: The demodulation performance of the EKF for the two in-phase and quadrature-
phase sampled signals (yh

t and yc
t ) is almost identical. This is despite not taking into

account in the EKF signal model the noise colouration of yh
t . 2
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Figure 5: Plot of average frequency root mean-square error
versus SNR for three different FM demodulation
problems.

Further Work 10: An analysis of the effects of using

• the ideal analytic equivalent signal and

• block and on-line estimates of the analytic equivalent signal

in conjunction with the various frequency estimation and tracking
algorithms needs to be conducted.

The authors Rihaczek [1966], Bedrosian [1963] and Nuttall [1966] have proved various
results about narrow-band frequency modulated signals and their Hilbert transforms.

4 Frequency Resolution

When the signal of interest is two closely spaced sinusoids

yt = µ + ρ cos (ω0(t− ν) + φ) + ρ cos
(
(ω0 +

a

T
)(t− ν) + φ

)
+ εt (15)

then Hannan and Quinn [1989] have shown that one-dimensional periodogram techniques
are outperformed by the maximiser of the regression sum of squares. The regression sum
of squares for the signal model of (15) will be a function of two variables, ω0 and a.

Other approaches are discussed by van Hamme [1991] and Lee [1992].
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5 Model Order Selection

In any model-based scheme, the issue of appropriate model complexity or model order
arises. In the multi-tone and multi-harmonic frequency estimation problems, this is the
selection of p, the model order. If p is too large, then spurious frequencies may appear to
be present; if p is too small, then important information about some frequencies may be
lost.

The standard method for model order selection in auto-regressive modelling is the
automatic information criterion or AIC proposed by Akaike [1974]. Quinn [1989] and
Hannan [1992] have suggested modifications to this criterion.

Further Work 11: Further study of both model order selection and
the robustness of particular estimators to inaccurate order esti-
mates is required. Some work on this last point, for the multihar-
monic case, has been reported in Williamson et al. [1994].

6 Summary of the Associated Problems

This ends the section on problems associated with frequency estimation and tracking.
The main problems identified here which need further work are the effect of using the
analytic signal for either problem and a full theoretical and experimental comparison of
the suite of frequency estimators available.

The next two parts of this report detail some frequency estimation (Part II) and
frequency tracking (Part III) algorithms.

33



References

H. Akaike, A New Look at the Statistical Model Identification, IEEE Transactions on
Automatic Control, AC-19 (1974), pp. 716–723.

B. D. O. Anderson, B. James, and R. C. Williamson, Frequency Line Tracking,
Extended Kalman Filters and some HMM Problems, Presented at the Workshop
on Hidden Markov Models for Tracking, Wirrina Cove Resort, South Australia,
1992.

B. D. O. Anderson and J. B. Moore, Optimal Filtering , Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey 07632, 1979.

T. Bar-Shalom and T. E. Fortmann, Tracking and Data Association, 179, Academic
Press, 1988.

R. F. Barrett and D. A. Holdsworth, Frequency Tracking Using Hidden Markov
Models With Amplitude and Phase Information, Hidden Markov Models for
Tracking Workshop, Wirrina Cove Resort, 1992.

R. F. Barrett and D. R. A. McMahon, ML Estimation of the Fundamental Fre-
quency of a Harmonic Series, the International Symposium of Signal Processing
and its Applications, 1987.

E. Bedrosian, A Product Theorem for Hilbert Transforms, Proc. IEEE, 51 (1963),
pp. 868–869.

D. V. Bhaskar Rao and S. Y. Kung, Adaptive Notch Filtering for the Retrieval of
Sinusoids in Noise, IEEE Transactions on Acoustics, Speech and Signal Process-
ing, 1984.

R. R. Bitmead, On Recursive Discrete Fourier Transformation, IEEE Transactions on
Acoustics, Speech and Signal Processing, ASSP-30(2) (1982), pp. 319–322.

R. R. Bitmead and B. D. O. Anderson, Adaptive Frequency Sampling Filters, IEEE
Transactions on Acoustics, Speech and Signal Processing, ASSP-29(3) (1981),
pp. 684–694.

R. R. Bitmead, A. C. Tsoi, and P. J. Parker, A Kalman Filtering Approach
to Short-Time Fourier Analysis, IEEE Transactions on Acoustics, Speech and
Signal Processing, ASSP-34(6) (1986), pp. 1493–1501.

B. Boashash, Estimating and Interpreting the Instantaneous Frequency — Part 1: Fun-
damentals, Proceedings of the IEEE, 80(4) (1992a), pp. 520–538.

B. Boashash, Estimating and Interpreting the Instantaneous Frequency — Part 2: Algo-
rithms and Applications, Proceedings of the IEEE, 80(4) (1992b), pp. 540–568.

B. Boashash, B. C. Lovell, and P. J. Kootsookos, Time-Frequency Signal Anal-
ysis and Instantaneous Frequency Estimation, the International Symposium on
Circuits and Systems, 1989.

V. Clarkson, Efficient Single Frequency Estimators, the International Symposium on
Signal Processing and its Applications, Gold Coast, 1992.

V. Clarkson, P. J. Kootsookos, and B. G. Quinn, Variance Analysis of Kay’s
Weighted Linear Predictor Frequency Estimator, IEEE Transactions on Signal
Processing , 42 (1994), pp. 2370–2379.

34



S. B. Colegrove, A Unified PDA Tracking Filter with Initiation, Nearest Neighbours
and Non-Uniform Clutter, Presented at the Workshop on Hidden Markov Models
for Tracking, Wirrina Cove Resort, South Australia, 1992.

P. Dupuis and H. J. Kushner, Stochastic Systems with Small Noise, Analysis and
Simulation; A Phase Locked Loop Example, SIAM J. Appl. Math., 47(3) (1987),
pp. 643–661.

J. M. Fernandes, G. C. Goodwin, and C. E. de Souza, Estimation of Models for
Systems Having Deterministic and Random Disturbances, Proceedings of the
10th World Congress on Automatic Control, 10 (1987), pp. 370–375.

H. van Hamme, A Stochastical Limit to the Resolution of Least Squares Estimation of
the Frequencies of a Double Complex Sinusoid, Submitted to the IEEE Trans-
actions on Signal Processing, 1991.

E. J. Hannan, The Estimation of Frequency, Journal of Applied Probability, 10(3)
(1973), pp. 510–519.

E. J. Hannan, Determining the Number of Jumps in a Spectrum, Preprint, 1992.

E. J. Hannan and D. Huang, On Line Frequency Estimation, Preprint, 1993.

E. J. Hannan and B. G. Quinn, The Resolution of Closely Adjacent Spectral Lines,
Journal of Time Series Analysis, 10(1) (1989), pp. 13–31.

D. Huang and E. J. Hannan, Estimating Time Varying Frequency , Preprint, 1993.

B. James, Approaches to Multiharmonic Frequency Tracking and Estimation, Australian
National University Ph.D. Thesis, 1992.

B. James, B. D. O. Anderson, and R. C. Williamson, Multiharmonic Frequency
Estimation in Noise, Submitted to the IEEE Transactions on Signal Processing,
1991a.

B. James, B. D. O. Anderson, and R. C. Williamson, Conditional Mean and
Maximum Likelihood Approaches to Multiharmonic Frequency Estimation, Sub-
mitted to the IEEE Transactions on Signal Processing, 1991b.

B. James, B. D. O. Anderson, and R. C. Williamson, Characterization of Thresh-
old for Single Tone Maximum Likelihood Frequency Estimation, Submitted to
the IEEE Transactions on Signal Processing, 1992a.

B. James, B. D. O. Anderson, and R. C. Williamson, Characterization of Thresh-
old for Multiharmonic Maximum Likelihood Frequency Estimation, Submitted
to the IEEE Transactions on Signal Processing, 1992b.

M. Karan, R. C. Williamson, and B. D. O. Anderson, Performance of the Maxi-
mum Likelihood Constant Frequency Frequency Estimator for Frequency Track-
ing, IEEE Transactions on Signal Processing, 42(10) (1994).

S. M. Kay, Modern Spectral Estimation — Application and Theory , Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1988.

S. M. Kay, A Fast and Accurate Single Frequency Estimator, IEEE Transactions on
Acoustics, Speech and Signal Processing, 37(12) (1989), pp. 1987–1989.

C. N. Kelly and S. C. Gupta, The Digital Phase-Locked Loop as a Near-Optimum FM
Demodulator, IEEE Transactions on Communications, COM-20 (1972), pp. 406–
411.

35



P. J. Kootsookos, B. C. Lovell, and B. Boashash, A Unified Approach to the
STFT, TFDs and Instantaneous Frequency, IEEE Transactions on Signal Pro-
cessing, 40 (1992), pp. 1971–1982.

G. W. Lank, I. S. Reed, and G. E. Pollon, A Semicoherent Detection Statistic and
Doppler Estimation Statistic, IEEE Transactions on Aerospace and Electronic
Systems, AES-9(2) (1973), pp. 151–165.

H. B. Lee, The Cramér-Rao Bound on Frequency Estimates of Signals Closely Spaced
in Frequency, IEEE Transactions on Acoustics, Speech and Signal Processing,
40(6) (1992), pp. 1508–1517.
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