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Collective behavior in financial market
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Financial market is an example of complex system, which is characterized by a highly intricate
organization and the emergence of collective behavior. In this paper, we quantify this emergent dy-
namics in the financial market by using concepts of network synchronization. We consider networks
constructed by the correlation matrix of asset returns and study the time evolution of the phase
coherence among stock prices. It is verified that during financial crisis a synchronous state emerges
in the system, defining the market’s direction. Furthermore, the paper proposes a statistical regres-
sion model able to identify the topological features that mostly influence such an emergence. The
coefficients of the proposed model indicate that the average shortest path length is the measurement
most related to network synchronization. Therefore, during economic crisis, the stock prices present
a similar evolution, which tends to shorten the distances between stocks, indication a collective
dynamics.

PACS numbers: 89.75.Fb,05.45.Xt,02.10.Ox

INTRODUCTION

Stock market is an example of complex systems, which
are characterized by self-organization and emergent be-
havior [1]. The market regulates the relative security
prices of companies worldwide without an external or
central control. More specifically, individual actions
made by independent investors cause an emergent be-
havior (the market’s direction). Agents, or investors,
have information about only a limited number of compa-
nies within their portfolio and must follow the regulatory
rules of the market and analyze the transactions either
independently or in large groupings. Since this complex
system is composed of elements that interact nonlinearly
generating an intricate organization, it can be naturally
represented by networks [2, 3]. In this case, nodes corre-
spond to stocks and the connection between two stocks
can be defined according to their price dynamics [4–7].
This representation allows studying financial markets by
taking into account methods, tools and concepts of com-
plex networks theory [8, 9].

The early studies involving the representation of fi-
nancial markets in terms of networks considered the cor-
relation matrix of asset returns [4], in order to find a
hierarchical arrangement of stocks through studying the
clustering of companies [4]. In this way, the initial in-
terest was focused mainly on the topological analysis of
financial networks, in which a minimum spanning tree
was generated, so as to select the most important con-
nections and group companies according to their asset re-
turns. Subsequent works investigated dynamical aspects
of financial networks. For instance, Onnela et. al. [10]

studied the resilience of the minimal spanning tree and
the consequences of economical events on its structure.
They verified that the evolving analysis could capture
economic instabilities, such as the Black Monday, which
occurred on October 19th, 1987.

In the current work, we are also interested in examin-
ing dynamic aspects of financial market networks. More
specifically, it is analyzed the emergence of collective be-
havior by considering concepts of network synchroniza-
tion [11]. The emergence of collective behavior occurs
when stock prices exhibit a similar tendency, defining
the market’s direction. We have verified that such col-
lective dynamics occurs during financial instabilities. For
instance, networks generated during financial crisis (e.g.
the Black Monday and the the global economic crisis of
2008) present a higher degree of synchronization than
networks generated in other periods.

Besides the dynamical analysis, we examine how
the network organization changes during financial cri-
sis, which cause the collective behavior. A regression
model [12] is adopted to verify the network properties
that influence the degree of synchronization. It revealed
that the increase in the average shortest path length de-
creased the level of synchronization. Thus, during eco-
nomic instabilities, since stock prices tend to evolve sim-
ilarly, as verified by the increase in the network synchro-
nization, the network average shortest path is reduced.
The same effect is observed in the average clustering coef-
ficient. Thus, the emergence of the collective behavior is
a consequence of network reorganization during financial
crashes.

The following sections discusses the results mentioned
above in more detail, describing the construction of fi-
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nancial market networks, the concepts of synchroniza-
tion and how we can relate the structure and dynamics
of these networks by considering regression analysis.

COLLECTIVE DYNAMICS

Financial market networks are constructed by consid-
ering correlation matrices [4]. More specifically, we take
into account the correlation coefficient between the time
series of two stocks i and j, which is given by

ρij =
〈YiYj〉 − 〈Yi〉 〈Yj〉

√

(〈Y 2
i 〉 − 〈Yi〉

2
)(
〈

Y 2
j

〉

− 〈Yj〉
2
)

(1)

where Yi is the return of a stock i given by Yi = lnPi(t)−
lnPi(t−1) and Pi(t) is the closure at day t. The distance
between two stocks i and j can be calculated by [4]

d(i, j) =
√

2(1− ρij). (2)

This distance is close to zero if two stocks present similar
price evolution, i.e. correlated time series. On the other
hand, two stocks whose prices have contrary tendency
have distance close to two. These distances between N
stocks form a symmetric N×N distance matrix D, which
is the weighted matrix that represents the topology of the
financial market.

We constructed financial networks by taking into ac-
count a database formed by the daily prices of 3,799
stocks traded at New York Stock Exchange. These stock
prices are available at the Yahoo! financial website [23].
We have selected N = 348 stocks from this set, which are
the stocks that have historical data from January 1986
to February 2011. From these data, an amount of 6,008
closure prices per stock is generated.

In order to study the collective behavior of the finan-
cial market, it is necessary to consider the time evolution
of the respective networks. By setting a time window
of length ∆t = 28 days and moving this window along
time, we can obtain a sequence of networks — each one
describing the market organization inside each window.
This window is moved by an amount of δt = 1 day and a
new network is obtained after each displacement. More
specifically, the first network is constructed from the time
series starting at day t11 = 1 and ending at day t12 = 28,
the second network from the time series starting at day
t21 = 2 and ending at day t22 = 29, and so on. This process
is repeated until the end of the original time series has
been reached. Since the whole database corresponds to a
time series composed of 6,007 returns per stock, a total of
5,979 networks was achieved. Differently from previous
works (e.g. [4, 10], instead of using the spanning trees,
the fully connected weighted networks were taken into
account to represent the financial networks. This choice
allowed considering the whole information about network

topology, since the spanning tree methodology uses only
the most important connections, ignoring the majority of
the links.

The collective dynamics of complex systems can be
studied by taking into account the concepts of network
synchronization [13]. This dynamic process causes the
emergence of collective phenomena when there occurs
the onset of synchronization [11]. A model to describe
the synchronization of a system was proposed by Ku-
ramoto [14]. In complex networks, each oscillator i obeys
an equation of motion given by

θ̇i = ωi + λ

N
∑

i=1

aij sin(θj − θi), i = 1, . . . , N, (3)

where λ is the coupling strength, ωi is the natural fre-
quency of oscillator i (generally distributed according to
some function g(w)), and aij are the elements of the ad-
jacency matrix A, which represent the topology of the
complex systems. More specifically, elements aij = 1 if
two nodes i and j are connected, and aij = 0, otherwise.
Coupling strengths higher than a determined threshold
λc produce the onset of synchronization. As the coupling
strength is increased, more and more oscillators present
individual phase around the average phase of the whole
system and the network settles in the complete synchro-
nized state.

In order to study the synchronization dynamics in
financial market networks, we adapted the Kuramoto
model [15] by considering the distance between stocks,
dij , which are the elements of the distance matrix D (see
Equation 2).

θ̇i = ωi + λ

N
∑

i=1

e−αdij sin(θj − θi), i = 1, . . . , N. (4)

We considered a value of λ = 0.1. Parameter α is a
constant and we adopted α = 5. The collective dynamics
of the whole system can be measured by the macroscopic
complex order parameter,

r(t) =

∣
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∣

∣
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N
∑

j=1
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∣

∣

∣

∣

, (5)

where 0 ≤ r(t) ≤ 1 measures the phase coherence of
populations. When r(t) ≈ 1, all nodes oscillate with
similar phases

Figure 1 presents the evolution of the macroscopic
complex order parameter for the generated financial mar-
ket networks for t ≈ 104. During most of the time, the
synchronization level does not suffer a high variation and
it is kept around r = 0.05. On the other hand, three
prominent peaks can be observed in specific times. The
first, at the beginning of the time series, corresponds
to the networks constructed between 09/16/1987 and
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FIG. 1: Time evolution of the network synchronization.

10/26/1987. A financial instability known as Black Mon-

day occurred inside this interval, i.e. on October 19th,
1987. The other two high peaks correspond to networks
generated during the financial global crisis, which started
in 2008. The last peak started decreasing only in 2010,
when the global crisis was attenuated. Therefore, the
time series indicate that during economic instabilities, fi-
nancial networks tend to become more synchronizable,
i.e. the phase coherence increases, indicating the emer-
gence of a collective behavior of stock prices, since most
of them tend to have a similar evolution. During financial
crashes, stock prices move to the same direction present-
ing a behavior similar to those observed in other type
of complex systems, such as cellular movements in tissue
formation, flock of birds, and social behavior in human
societies. On the other hand, in “normal” periods, stock
prices tend to evolve in a more independent fashion and
the behavior of each stock is not synchronized as verified
in financial crisis.

STRUCTURE AND DYNAMICS

The synchronization of financial market networks is
determined by the network organization. Thus, we in-
vestigate the topological properties that influence such
synchronization and therefore understanding how finan-
cial market networks evolve in different situations. This
investigation is one of the main problems in complex net-
works research [2]. For instance, Watts and Strogatz [13]
suggested that the decrease in the average shortest path
length in small-world networks facilitated a more efficient
coupling and, therefore, enhanced synchronization. They
examined this tendency by increasing the probability of
rewiring, which creates more shortcuts between pairs of
vertices. Other works have investigated the influence of
the distribution of connectivity [16], clustering coefficient

(e.g. [17]) and degree correlations [18]. In all these pa-
pers, networks are modified in order to keep some prop-
erties constant while others are varied. However, when
the parameters characterizing the original network are
modified, other network properties also change, raising
difficulties to draw conclusions about the relationship be-
tween one single statistical property of network and its
synchronization level [11]. To overcome this difficulty, we
propose here the use of statistical regression analysis [12].
This methodology helps understand how the value of the
dependent variable changes when any independent vari-
able is varied — while the other independent variables
are held fixed. Thus, regression allows verifying the rela-
tionship between synchronization and network properties
in a proper fashion.

Although a regression model does not imply in a cause-
effect relationship between variables, it allows to obtain
an association between variables. In the case of complex
networks theory, it is known that the topology have a di-
rect effect on dynamical process [2]. So, the cause-effect
relationship is determined theoretically and the regres-
sion allows to quantify such a relationship.

Three network measurements are considered to deter-
mine those that influence the network synchronization.
The weight of the connection between two stocks is given
by their distance (see Equation 2). The strength of a
node, s, is defined as the sum of the weights of its cor-
responding edges. From this measurement, it is possible
to quantify the network strength heterogeneity by taking
into account the Shannon entropy of the strength distri-
bution, P (s), i.e.

H = −
∑

i

P (si) log2 P (si). (6)

The clustering coefficient for weighted networks is given
by [19]

ccwi =
1

ki(ki − 1)

∑

j,k

(ŵijŵikŵjk)
1/3 , (7)

where the weights are normalized by the maximum
weight in the network, ŵij = wij/maxpq(wpq), p, q =
1, 2, . . . , N . The respective global measurement is the
average cluster coefficient

C =
1

N

N
∑

i

ccwi . (8)

The weighted average shortest path length permits quan-
tifying the average topological distance between the
stocks,

ℓ =
1

N(N − 1)

∑

i6=j

τij . (9)

where τij is the length of the shortest distance between
stocks i and j. Note that a more similar time evolution
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of a pair of stock prices implies shorter distance between
them.

Considering these measurements, we have proposed a
regression model to determine the relationship between
the structure and dynamics of financial markets. This
model is given by

r = β0 + β1H + β2C + β3ℓ+ ε. (10)

where ε is assumed to be normally distributed with mean
zero and standard deviation σ. This variable captures all
other factors which influence the dependent variable r
other than the network measurements considered. Thus,
in the proposed regression model, the dependent variable
r represents the order parameter r(t) obtained for a large
value of t ≈ 104. On the other hand, the independent
variables are the network topological measurements, i.e.
the Shannon entropy of the strength distribution (H),
the average clustering coefficient (C), and the average
shortest path length (ℓ). The contribution of each net-
work measurement i for the synchronization is given by
coefficient βi.

The regression analysis adopted here considers the
least-squares estimator. In this case, some assumptions
with respect to the database must be done. First, the
networks considered must be independent. Thus, we take
into account only networks constructed by disjoint time
series, i.e. time series without time intersections. More
specifically, networks constructed from windows starting
at day 1, day 29, day 57, and so on. The second assump-
tion is related to the fact that the independent variable
must present, at least approximately, a normal distribu-
tion. Figure 2 shows the normal probability plot, which is
a graphic technique for normality testing. Despite some
outliers, the points lie close to a straight line, which al-
lows concluding that the distribution of r is consistent
with a sample from a normal distribution. Ifnteresting
to note that the outliers correspond to the networks ob-
tained during financial crisis, i.e. they correspond to the
highest values of r (see Figure 1). Thus, during financial
instabilities, a financial network has an anomalous or-
ganization, differing strongly from normal periods. The
presence of these outliers makes the least squares esti-
mation inefficient and can also be biased. Therefore, we
adopted the robust regression [20, 21] to obtain the coef-
ficients of the regression model, since this method allows
treating data with outliers. Robust regression works by
assigning a weight to each data point. At the first step,
equal weights are assigned to each point and ordinary
least squares are used for estimation. In the next step,
weights are recalculated so that points farther from pre-
dictions in the previous iteration are given lower weight.
The coefficients of the model are recalculated by using
ordinary least squares. The process is repeated until the
values of the coefficient estimates have converged within
a specified tolerance.
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FIG. 2: Normal probability plot for r.

By performing the robust regression with ordinary
least squares, the following linear model was obtained,

r = 1.74− 0.090H − 0.103C − 0.826ℓ+ ε. (11)

Coefficients β1 = −0.09 suggests that the value of the
Shannon entropy of the strength distribution does not in-
fluence significantly the network synchronization. Thus,
the heterogeneity in the strength distribution causes a
small decrease in the synchronization level. The cluster-
ing coefficient and the average shortest path length also
contribute negatively to the onset synchronization. A
large clustering coefficient implies many transitive con-
nections and, consequently, more redundant paths in the
network, which tend to prejudice the emergent behavior.
The major influence on the degree of synchronization is
due to the average shortest path length, β3 = −0.826.
This network property has a negative influence on the
network synchronization, since larger distances delay the
appearance of the fully synchronized state. During finan-
cial crisis, the average shortest path diminishes, leading
to an increase int the network synchronization level. This
event indicates that the stock prices present a collective
behavior, which implies an increase in the correlation be-
tween pairs of nodes. During economic crisis, the sock
prices tend to exhibit a similar evolution. This result
was expected, since the prices tend to suffer a strong
decrease during crashes, defining the market’s direction.
Thus, the increasing in the degree of synchronization is
mainly due to the decrease in the average shortest path
length during financial crisis.

CONCLUSIONS

Financial markets are examples of complex systems
which can be represented as networks. The emergence
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of a collective behavior has been observed in many com-
plex systems, such as flocking of birds and swarm intel-
ligence in ant colonies [22]. This phenomenon is a con-
sequence of the agents which interact according to local
rules. Since financial markets are examples of complex
systems, a collective behavior is expected to be also ob-
served. The current work analyzes financial complex net-
works whose nodes represent stocks and the connections
between two nodes are established according to a mea-
surement related to the correlation between the temporal
price evolutions of the respective stocks. We take into ac-
count the Kuramoto model, which describes the synchro-
nization of a system, to study the emergence of collec-
tive dynamics. Our results suggest that during financial
instabilities, stock prices tend to move to the same di-
rection, becoming more synchronizable, which indicates
the emergence of a collective behavior. This tendency
was observed during the Black Monday on October 19th,
1987, and during the last global crisis, which started in
2008 and was attenuated in the early 2010. In these pe-
riods, financial networks presented the highest degrees of
synchronization.

In order to determine the topological factors that in-
fluence such a synchronization and understand the re-
organization of the financial market networks during fi-
nancial instabilities, a statistical regression model was
used. Since the data considered here present some out-
liers, which correspond to the networks generated during
financial crashes, we have taken into account the robust
regression approach. The regression model suggests that
the clustering coefficient and the average shortest paths
length tend to prejudice the network synchronization.
Thus, during economic crisis, the stock prices present
similar evolution, which results in a higher correlation
between time series. Such a correlation tends shorten
distances in the networks, enhancing synchronization.

In summary, the results presented in the current work
help to understand how the collective dynamics emerge
in financial markets. In addition, the regression analysis
permits determining how structural properties influence
this network dynamics.
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