
1 

 

Bridging Level-K to Nash Equilibrium 

Dan Levin and Luyao Zhang1 

Last revised November 2019 

Abstract 

We propose a new solution concept, NLK that connects Nash Equilibrium (NE) 

and Level-K. It allows a player in a game to believe that her opponent may be either 

less- or as sophisticated as, she is–a view with support in psychology. We apply it 

to data from four published papers on static, dynamic and auction games. NLK 

provides different predictions than those of NE and Level-K. Moreover, a simple 

version of it explains the experimental data better in many cases, with the same or 

lower number of parameters. We discuss extensions to games with more than two 

players and heterogeneous beliefs. 
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1. Introduction 

 There is mounting and robust evidence from laboratory experiments of substantial 

discrepancies between the prediction of Nash Equilibrium (NE) and the behavior of agents.2 

Among all the alternative models that retain the individual rationality, but relax correct beliefs, 

Level-K is probably the most prominent one.3 First proposed by Stahl and Wilson (1994, 1995) 

and Nagel (1995), Level-K introduces a non-equilibrium, structural model of strategic thinking, 

which admits possible cognitive limitations of players that are not allowed in NE.4 This model has 

a hierarchy of levels of sophistication that are constructed iteratively starting with an exogenous, 
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2 There is much experimental evidence that predictions of both (Bayesian) NE in static games and Subgame Perfect 

Nash Equilibrium (SPNE) in dynamic games fail miserably. For instance, see McKelvey and Palfrey (1992) and Kagel 

and Levin (2002). 
3 Another strand of models such as Quantal Response Equilibrium (McKelvey and Palfrey 1995) retains correct beliefs 

but allow errors in best response.   
4 There are many variations and extensions of the Level-K model and we refer the reader to Crawford, Costa-Gomes, 

and Iriberri (2013) and the references therein.  
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non-strategic and least sophisticated level0 player. Higher levels are then constructed by assuming 

that a levelk player best responds to levelk-1 opponents, 𝑘 = 1,2, …. Absent in NE, the Level-K 

model explicitly allows players to consider their opponents as less sophisticated than themselves. 

However, it does not allow players to use an important element of strategic thinking, namely, “put 

yourself in the other’s shoes.” 

 Our paper introduces a new solution concept, NLK, that bridges between NE and the Level-

K model. Whereas a Nash player believes that the other player is another Nash player, and a Level-

K player believes that the other player is less sophisticated than herself, NLK allows the player to 

believe, with a probability 𝜆, the other player can be a naïve player, less sophisticated, than herself 

and, with a probability of (1 − 𝜆),  another NLK player, as sophisticated as herself. However, NLK 

player is still best responding to her subjective beliefs like in both NE and Level-K.5  We also 

discuss below how to construct a hierarchy of levels as Level-K does.  However, in this work we 

compare the performance of NLK, employing only 𝑘 = 1, to that Nash equilibrium or Level-K 

model with several k’s, where the naïve player is consistently a random level0 player that chooses 

uniformly among its strategy set.  

Our model has two possible interpretations:  

1. A population game: In this interpretation, an NLK player behaves as if she faces a population 

composed of naïve players and NLK players. In equilibrium, an NLK player best responds to her 

belief that with a probability 𝜆, her opponent is a naïve player, and that with a probability of (1 −

𝜆), her opponent is another NLK player (like herself). Note that 𝜆 is the subjective belief formed 

by the player and it does not have to coincide with the objective proportions of naïve players in 

the population, denoted by ρ. Thus, with 𝜆 ≠  ρ, NLK is not a “full-equilibrium,”6 as it allows an 

NLK player to hold inconsistent beliefs regarding the proportion of naïve players in the population. 

Such inconsistency finds support in psychology: The “False Consensus Effect,” first introduced 

by Ross, Greene, and House (1977), claims that people overestimate the proportion of people like 

 
5 The formal definition of NLK and its extensions to Bayesian games and dynamic games are in Section 2. 
6 Stahl and Wilson (1995) include a rational expectation type together with different types of levelk and Nash players 

in analyzing experimental data of a 3× 3 symmetric game. Their results reject the existence of rational expectation 

type. 
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themselves(𝜆 < ρ).7 More recent works, both in psychology and experimental economics, have 

re-evaluated the “False Consensus Effect” with some works providing evidence in support of such 

effect (Krueger and Clement 1994, Jimenez-Gomez 2018), while other works point at evidence to 

an opposite effect (𝜆 > ρ) (Dawes 1990, Sherman, Presson, and Chassin 1984) or the absence of 

a biased belief (Engelmann and Strobel 2000) Of course, one may insist on consistency by 

requiring that in a “full-equilibrium” 𝜆 = ρ. 

2.  A hierarchy of heterogeneous players: A construction of such hierarchy can be accomplished 

in two ways.  

a. As an analog of the Level-K model: A player is an NLK player of type 𝑚, denote by 

NLKm, when his naïve opponent is exogenously given as a levelm-1 player of the Level-K model. 

Thus, an NLKm player coincides with a levelm player when 𝜆 = 1 and NLK equilibrium reduces 

to NE when 𝜆 = 0. 

b. As an analog of the Poisson Cognitive Hierarchy (P-CH) model (Camerer, Ho, and 

Chong 2004).8 

 In this work we only use 𝑚 = 1, resulting in NLK that has just one parameter, λ. We show 

that this simplest version of NLK already outperforms Level-K in many cases, although in some 

of them Level-K uses more than one parameter. 

To illustrate the NLK equilibrium, consider a simple example of the chicken game 

introduced by Rapoport and Chammah (1966). It is a two-player symmetric game, where each 

player chooses either “Dove” or “Hawk,” and the player’s payoffs depend on her own action and 

that of the opponents as follows: 

 Dove Hawk 

Dove 30,30 20,70 

Hawk 70,20 0,0 

         Table 1. The Dove and Hawk Game. 

 A random level₀ chooses to play either Dove or Hawk with equal probability. A level₁ best 

responds to the level₀ player by choosing Hawk. A level₂ best responds to the level₁ player by 

 
7 There is a rich psychology literature supporting the finding of FCE or the “self-anchoring” argument. Mullen et al. 

(1985) reported 115 studies that show FCE. For more detailed empirical and theoretical discussion, refer to Marks and 

Miller (1987) and all the listed references therein.  
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choosing Dove, a level₃ best responds to the level₂ player by choosing Hawk, and so on. There are 

two pure NE strategies: (Hawk, Dove) and (Dove, Hawk) and a third mixed strategy where Dove 

and Hawk are played with are played with the probability of (1/3) and (2/3) respectively. Now, 

consider an NLK1 player who faces a naive random level0 player with the probability of 𝜆 and 

another NLK1 player with the probability of (1 − 𝜆). For 
2

3
≤ 𝜆 ≤ 1, only one pure strategy NLK 

equilibrium exists, where each player chooses Hawk. For 0 ≤ 𝜆 <  
2

3
, there exist two pure strategy 

NLK equilibria: (Hawk, Dove) and (Dove, Hawk) and a mixed-strategy where Dove and Hawk are 

played with the probabilities of 
2−3𝜆

6(1−𝜆)
 and 

4−3𝜆

6(1−𝜆)
, respectively.  

 As a new solution concept, NLK shares a similar foundation to NE but is also applicable 

to games with players of different cognitive or reasoning abilities. For example, in the experiment 

of Alaoui and Penta (2016), math and science students who interact with students from humanities, 

may adopt a different subjective 𝜆 than when they play with fellow math and science. Such a 

conjecture, (e.g., larger 𝜆) is reasonable and can be tested. We also adapt our basic definition of 

NLK to Bayesian games and dynamic games, as extensions of Bayesian Nash Equilibrium (BNE) 

and Subgame Perfect Nash Equilibrium (SPNE).  

 We are able to compare the performance of NLK to that of NE and some versions of Level-

K by applying it to data from three experimental papers published in top economic journals and to 

data from a field study. These studies allow us to test the NLK on a static game of complete 

information and another with incomplete information, a dynamic game of perfect information, and 

on field data. For those experiments that we analyzed, NLK provides several insightful 

implications. First, in the static Guessing Game by Arad and Rubinstein (2012), a simple version 

of NLK with one parameter, 𝜆 ∈ (0,1), that is chosen optimally, fits data better than both NE and 

Level-K models with an optimal distribution among three types of players, i.e., two parameters. 

Allowing for an error structure that is sensitive to payoffs, but using only one parameter, NLK still 

outperforms Level-K models. However, allowing Level-K to choose freely more parameters, fits 

better than the simple NLK, suggesting that in some cases, NLK can also serve as an analytical 

tool. Second, in application to the data from an experiment of the Centipede Game by Palacios-

Huerta and Volij (2009), NLK’s predictions, adapted to dynamic games, are different and more 

precise than those of SPNE and Level-K models, with only few exceptions when they coincide, or 
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when Level-K adopts more parameters. It is also reassuring that the optimal 𝜆 < 1 is the largest 

when players are all students, the smallest when only chess players are involved, and in the middle 

when a chess player is matched with a student. Thus, the optimal 𝜆 for NLK seems to track and 

capture the shift in subjective beliefs that can be expected in the different mixes of subjects’ 

populations. The better performance of NLK than Level-K in the Centipede Game is reconfirmed 

by using the data from Levitt, List, and Sadoff (2011). Moreover, NLK can capture belief updating 

in every round of a game that a dynamic Level-K cannot. Notably, although the results of data 

from the Centipede Game in the two aforementioned papers are drastically different, NLK predicts 

both quite well with different optimal 𝜆s, which implies the difference in behavioral data can be 

explained by the difference in beliefs of subjects between two datasets. In addition, we compare 

predictions of NLK to those of Level-K for the data from the Common-Value Auction experiment 

by Avery and Kagel (1997). For inexperienced bidders, NLK’s performance coincides with that 

of Level-K; but for experienced bidders, NLK with 𝜆 ∈ (0,1)  provides the most accurate 

prediction. Moreover, since the estimated 𝜆 is larger for the data of experienced bidders than that 

of inexperienced bidders, NLK may also be used to track dynamic learning from experience, for 

example, learning in repeated games and convergence to a “full-equilibrium,”𝜆 = 𝜌 = 0. Finally, 

in a recent experimental work on a rank-order tournament with an outside option-a dynamic game 

with imperfect information, Brünner (2018) finds that a mixture of Level-K and NLK predicts 

both the population of types in the tournament, as well as the mean variance of efforts remarkably 

well. In fact, that paper show that NLK predicts the experimental data better than a level-K model 

without updating of beliefs, which highlights the importance of the belief updating that PBNLK 

added onto Level-K and the validity of NLK for outside sample predictions.9 

Level-K and its related extension, Cognitive Hierarchy models by Camerer, Ho and Chong 

(2004) are applied to many laboratory experiments and field data. The survey by Crawford, Costa-

Gomes, and Iriberri (2013) documents many successes of Level-K and its extensions over other 

solution concepts, including NE. However, as we saw in the Chicken Game above and several 

examples in the following paper, NLK can be more useful than Level-K in certain games. 

 Theoretically, Level-K has been extended in two ways. Strzalecki (2014) allows beliefs to 

vary arbitrarily for players at a certain level. Specifically, a levelk player can believe the opponent 

 
9 Brünner (2018) shows that Nash Equilibrium performs even worse than the Level-K without belief updating. 
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to be level 𝑗 <  𝑘, by any arbitrary subjective distribution. However, here as well, beliefs are 

restricted to lower levels. Building on Strzalecki (2014), Jimenez-Gomez (2018) innovatively 

allows a levelk player to believe the opponent to be also a levelk player, but only when their beliefs 

coincide, and adopts the solution concept of interim correlated rationality to games of incomplete 

information that endogenize level-0 behavior. However, in the application to the e-mail game, the 

case where the player allows the opponent to be the same level is not considered.  Alaoui and Penta 

(2015) use another approach and show how cognitive bounds, beliefs about opponents, and beliefs 

about opponents’ beliefs, vary according to incentives by a cost-benefit analysis. In their model, if 

agents believe that their opponents behave at lower levels than their own cognitive bound, they 

would behave at one level higher than these opponents; but if they believe that the strategies of 

their opponents are reaching or exceeding their own cognitive bound, they would act at their own 

cognitive bound. So, although the above researchers considered a situation where the opponents 

have the same or even a higher cognitive level than the agents themselves, they treated it as if the 

opponents were nevertheless one level below the agents. Thus, as far as we are aware, no extension 

of the Level-K model either allows the player to believe she faces the same level as herself, or 

applied such belief structure, in analysis of games. 

 

NLK is not the first equilibrium solution concept to introduce an exogenous type; Kreps 

and Wilson; Milgrom and Roberts; and Kreps, Milgrom, Roberts, and Wilson (KMRW, all three 

papers were published in 1982), have already used an exogenous type. However, NLK and 

KMRW’s models are different drastically in motivation and generality. 

Motivation: KMRW’s works are motivated by Selten’s (1978) Chain-Store Paradox (CSP) 

and by vast experimental evidence of cooperation in finitely repeated Prisoner’s Dilemma (PD) 

games. Deterrence strategy in CSP 10  and cooperation in PD games contradict the logic of 

backward induction that implies unraveling to the one-shot, stage game, solution. KMRW’s 

objective is to resolve the paradoxes of using deterrence strategy in the CSP game and cooperation 

in the finitely repeated PD game. To do so, they transform these complete, into incomplete, 

information games by introducing a “tiny” probability of exogenous type and showing that it is 

sufficient to “choke off” the otherwise unavoidable logic of unraveling. The emphasis on tiny 

 
10 Deterrence strategy, where the monopoly fights an early entrant, although it is not the best response in the stage 

game, was offered by Selten (1978), as a sensible, though not an equilibrium, strategy to deter later entrant. 
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probability is a critical novelty, as otherwise deterrence strategy in the CSP game or cooperation 

in the PD game may be rationalized even in a one-shot game. In NLK, the probability λ of such 

exogenous type is typically quite large, similarly to, but may be smaller than, that in Level-K 

model. Thus, whereas the motivation of the KMRW’s models is to “defend” the standard NE, NLK 

is a behavioral model of bounded rationality. 

Generality: NLK introduces one nonstrategic exogenous type to be applied to all, or at least 

to a large class of different, games. In contrast, KMRW admit that their “defense” of the standard 

NE, requires a particular exogenous type for each case.11 For instance, in the CSP case, Kreps and 

Wilson, use a “strong” monopoly, who is hard-wired to fight; in finitely repeated PD game, 

KMRW use two nonstrategic types for two cases respectively: the one who plays Tit-for-Tat in 

the one-sided incomplete information game, and the one who prefers the stage payoffs from joint 

cooperation over those of defection when the other player cooperates, for their two-sided case.12 

 

 Like other models that use “relaxed beliefs,” NLK has its limitations. For example, NLK 

cannot explain deviations from theoretical predictions in games with a dominant strategy solution, 

such as overbidding one’s value in Second Price Sealed Bid auctions with private values, first 

reported by Kagel, Harstad, and Levin (1987). 

 In Section 2, we present our basic solution concepts as used in different types of games 

(static or dynamic, with complete or incomplete information). In Section 3, 4 and 5, we provide 

the NLK solutions and compare them to those of NE and Level-K models for a static Guessing 

Game, a dynamic Centipede Game, and a Common Value Auction. We conclude in Section 6. 

Readers can refer to Appendix A.3 if interested in a more comprehensive literature review 

comparing related solution concepts. 

 
11 KMRW explicitly acknowledge that such particular, and different, exogenous type may be needed for different 

cases. 
12 In addition, NLK can require that λ matches the probability of the exogenous type in the population making the 

model an equilibrium model with rational expectations. 
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2. The solution concept 

 In this section, we formally define the NLK equilibrium in different types of games and 

prove its existence. We focus on the simple case of only two players with symmetric beliefs. We 

discuss several extensions in Section 5. 

2.1 The Basic Case  

 Consider a normal form game with two players, 𝐺 = (𝑆𝑖, 𝑢𝑖)𝑖=1,2, where (𝑆𝑖 , 𝑢𝑖) are the 

strategy set and the utility function of player 𝑖, respectively. The strategy of a naïve player 𝑖 is 

given exogenously by 𝜎𝑖
𝑜 ∈ ∆(𝑆𝑖), 𝑖 = 1,2. In our strategic environment, an NLK player believes 

that her opponent is either a naïve player with probability 𝜆 or another NLK player with probability 

(1 −  𝜆), 𝜆 ∈ [0, 1]. In an NLK equilibrium, an NLK player chooses an optimal strategy by best 

responding to her belief. A formal definition of the NLK equilibrium is as follows: 

Definition 1. A mixed-strategy profile (𝜎𝑖
∗)𝑖=1,2, is a 𝜆-NLK equilibrium if for each 𝑖 = 1,2, and 

each 𝑠𝑖
′ ∈ 𝑆𝑖, 

 𝜆𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

0 ) + (1 − 𝜆)𝑢𝑖(𝜎𝑖
∗, 𝜎−𝑖

∗ ) ≥ 𝜆𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

0 ) + (1 − 𝜆)𝑢𝑖(𝑠𝑖
′, 𝜎−𝑖

∗ ). 

2.2. Bayesian Games 

 Consider a Bayesian Game of incomplete information 𝐵 = (𝑆𝑖, 𝑢𝑖 , Θ𝑖, 𝑝)𝑖=1,2, where Θ𝑖 

denotes the set of player 𝑖’s types and where 𝑝 is the joint density function of the probability 

distribution over Θ1 × Θ2. Similar to the relationship between NE and BNE, a BNLK equilibrium 

is the NLK equilibrium of the “extended game” in which each player 𝑖’s space of pure strategies 

is 𝑆𝑖
Θ𝑖, which denotes the set of mappings from Θ𝑖 to 𝑆𝑖. Again, let 𝜎𝑖

0 ∈ ∆(𝑆𝑖), 𝑖 = 1,2, denote the 

strategy of a naïve player 𝑖 which is independent of his type. Then a formal definition of BNLK 

with respect to subjective symmetric belief 𝜆 is as follows: 

Definition 2. A profile of strategies {𝑠𝑖
∗(∙)}𝑖=1,2, is a 𝜆-BNLK equilibrium, if for each 𝑖 = 1,2, and 

each 𝜃𝑖 ∈ Θ𝑖, 

𝑠𝑖
∗(𝜃𝑖) ∈ arg 𝑚𝑎𝑥𝑠𝑖∈𝑆𝑖

∫ 𝑝(𝜃−𝑖|𝜃𝑖)[𝜆𝑢𝑖(𝑠𝑖, 𝜎𝑖
0; 𝜃𝑖 , 𝜃−𝑖) + (1 − 𝜆)𝑢𝑖(𝑠𝑖, 𝑠−𝑖

∗ (𝜃−𝑖); 𝜃𝑖 , 𝜃−𝑖)]𝑑𝜃−𝑖. 
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2.3. Dynamic Games 

 Consider a dynamic game with perfect information and perfect recall played by two 

players13 𝑃 = (𝑢𝑖, Υ)𝑖=1,2, where Υ denotes a game tree. A node in the game tree Υ is denoted by 

ℎ𝑡, and the set of nodes is denoted by 𝐻. The set of nodes at which player 𝑖 must move is denoted 

by 𝐻𝑖. An NLK player holds a prior belief that the opponent is either a naïve player with probability 

𝜆 or another NLK player with probability (1 − 𝜆), 𝜆 ∈ [0, 1]. At every decision node with history 

ℎ𝑡, as more information is revealed, beliefs are updated. We denote the updated belief that the 

opponent is a naïve player as 𝑝𝑖(ℎ𝑡). In equilibrium, an NLK player chooses an optimal strategy 

according to her belief at every decision node. In other words, here the choice is sequentially 

rational as defined below: 

Definition 3. (sequential rationality). A strategy profile {𝜎𝑖
∗}𝑖=1,2  is sequentially rational with 

respect to the profile of beliefs {𝑝𝑖(ℎ𝑖
𝑡)}ℎ𝑖

𝑡∈𝐻𝑖
, 𝑖 = 1,2 if for 𝑖 = 1,2, all strategies 𝜎𝑖

′, and all nodes 

ℎ𝑖
𝑡 ∈ 𝐻𝑖: 

(1) 𝑝𝑖(ℎ𝑖
𝑡)𝑢𝑖(𝜎𝑖

∗, 𝜎−𝑖
0 |ℎ𝑖

𝑡) + (1 − 𝑝𝑖(ℎ𝑖
𝑡))𝑢𝑖(𝜎𝑖

∗, 𝜎−𝑖
∗ |ℎ𝑖

𝑡) ≥ 𝑝𝑖(ℎ𝑖
𝑡)𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
0 |ℎ𝑖

𝑡) +  

 (1 − 𝑝𝑖(ℎ𝑖
𝑡))𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗ |ℎ𝑖

𝑡).    

 We also require that the beliefs of an NLK player are consistent. That is, to start with a 

subjective prior distribution and then get updated by Bayes’ Rule at each succeeding decision node. 

To present formally the consistency restriction, let 𝑝(ℎ𝑡|𝜎𝑖 , 𝜎−𝑖)  denote the probability that 

decision node ℎ𝑡 is reached according to the strategy profile, (𝜎𝑖 , 𝜎−𝑖). 

Definition 4. (consistency). A profile of beliefs  {𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2  is consistent with the 

subjective prior 𝜆 and the strategy profile {𝜎𝑖}𝑖=1,2 if and only if for i=1,2, and all nodes ℎ𝑖
𝑡 ∈ 𝐻𝑖: 

(2)                                          𝑝𝑖
∗(ℎ𝑖

𝑡) =
𝜆𝑝(ℎ𝑖

𝑡|𝜎𝑖,𝜎−𝑖
0 )

𝜆𝑝(ℎ𝑖
𝑡|𝜎𝑖,𝜎−𝑖

0 )+(1−𝜆)𝑝(ℎ𝑖
𝑡|𝜎𝑖,𝜎−𝑖)

,  

Where,  𝑝(ℎ𝑖
𝑡|𝜎𝑖 , 𝜎−𝑖

0 ) > 0 or 𝑝(ℎ𝑖
𝑡|𝜎𝑖 , 𝜎−𝑖) > 0. 14 

 
13 That is, at any decision node, all previous moves are assumed to be known to every player.  
14 It should be noted that Definition 1.4 places no restrictions on player 𝑖’s expectations about those decision nodes 

that are not possibly reached according to 𝜎, regardless of facing a naïve player or another NLK player. A stronger 

notion of consistency could be defined in the spirit of a trembling hand or a sequential equilibrium (Kreps and Wilson, 

1982a). Such stronger restriction and its impact on prediction are discussed in Section 5. 
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 Although the game itself has perfect information, the belief structure in our strategic 

environment makes our solution concept more like an analogy of a Perfect Bayesian Equilibrium 

(PBE), So we denote it as PBNLK, formally treated below: 

Definition 5. An assessment (𝜎𝑖
∗, {𝑝𝑖

∗(ℎ𝑖
𝑡)}ℎ𝑖

𝑡∈𝐻𝑖
)

𝑖=1,2
 is a 𝜆-PBNLK equilibrium if  

1. The strategy profile  {𝜎𝑖
∗}𝑖=1,2 is sequentially rational with respect to the profile of beliefs  

{𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2 and  

2. The profile of beliefs {𝑝𝑖
∗(ℎ𝑖

𝑡)}ℎ𝑖
𝑡∈𝐻𝑖

, 𝑖 = 1,2 is consistent with the subjective prior λ and 

the strategy profile {𝜎𝑖
∗}𝑖=1,2. 

2.4. Existence 

Proposition 1. for any 𝜆 ∈ [0, 1]: 

a) In every finite strategic-form game, there exists an NLK equilibrium. 

b) In every finite Bayesian game, there exists a BNLK equilibrium. 

c) In every finite extensive form game, there exists a PBNLK equilibrium. 

Proof: The existence of an NLK equilibrium is guaranteed by a standard fixed-point theorem 

(Kakutani 1941), similar to the proof of the existence of a NE (Glicksberg 1952). For (b), a similar 

argument follows from Harsanyi (1973). For (c), consider an alternative dynamic game of 

incomplete information, P = (ui, Φi, Υ)i=1,2 , where Φi  denotes the possible types for agent i , 

which can be either a naïve player or an NLK player. Let Σ0be the strategy set of the naïve player 

and restrict it to be {σ0}. Then according to Kreps and Wilson (1982a), for every finite extensive 

form game, there exists at least one sequential equilibrium (𝜎𝑖
∗, 𝑝𝑖

∗)𝑖=1,2 should satisfy equation 1 

and 2 for sequential rationality and consistency. In other words, PBNLK exists.  

Remark 1.1. In the special case of  λ = 0, NLK/BNLK/PBNLK coincides with NE/BNE /SPNE. 

In the special case where the strategy of the naïve player is exogenously given as that of a levelk-1 

player, where k ∈ ℵ+ and λ = 1, then the strategy for an NLK player coincides with that of a levelk 

player in all three types of games considered above. 

3. The Arad-Rubinstein Money Request Game. 

 In the basic version of the Money Request Game by Arad and Rubinstein (2012), there are 

two risk-neutral players, and each can request and receive an integer amount of money from $11 

to $20, plus an extra $20 if she asks for exactly one integer less than the other player.  
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NLK (%)

(𝜆)
 15 16 17 18 19 20 

[0 ≤ 𝜆 ≤
1

2
) 

5(5 − 10𝜆)

1 − 𝜆
 

5(5 − 2𝜆)

1 − 𝜆
 

5(4 − 2𝜆)

1 − 𝜆
 

5(3 − 2𝜆)

1 − 𝜆
 

5(2 − 2𝜆)

1 − 𝜆
 

5(1 − 2𝜆)

1 − 𝜆
 

[
1

2
≤ 𝜆 ≤

14

20
) 0 

5(14 − 20𝜆)

1 − 𝜆
 

15

1 − 𝜆
 

10

1 − 𝜆
 

5

1 − 𝜆
 0 

[
14

20
≤ 𝜆 ≤

17

20
) 0 0 

5(17 − 20𝜆)

1 − 𝜆
 

10

1 − 𝜆
 

5

1 − 𝜆
 0 

[
17

20
≤ 𝜆 ≤

19

20
) 0 0 0 

5(19 − 20𝜆)

1 − 𝜆
 

5

1 − 𝜆
 0 

[
19

20
≤ 𝜆 ≤ 1] 0 0 0 0      100 0 

Table 2. NLK equilibrium strategy for different subjective beliefs. 

 Consider the Level-K model with a level0 payer who randomizes uniformly within the 

strategy set: {$11, $12, … , $20}. A level1 player that requests $20 earns $20. Alternatively, if she 

asks for $19, she would earn $19 for sure and $20 bonus with a probability of 1/10, for a total 

expected payoff of $21.15 Thus, level1 picks $19, level2 picks $18,…, and level9 picks $11. But 

then level10 picks $20, level11 picks $19, and so on. It is difficult to infer from players’ actions 

their sophistication level: A player who requests $19 can be a level1 player or a highly sophisticated 

level11 player.  

Table 2 shows the unique mixed strategy 𝜆-NLK equilibrium for each 𝜆 ∈ [0,19/20) and 

the unique pure strategy for 𝜆 ∈ [19/20,1].16 

Table 3 compares the performance of the Level-K model, 𝑘 = 1,2,3, NE, and NLK17 by 

using the Mean Squared Error (MSE). NLK with the best 𝜆 (= 0.6585) fits the data better than 

NE and any type of the Level-K model; moreover, it also outperforms Level-K with the optimal 

distribution of level₁, level₂ and level₃, i.e., two parameters, as it reduces MSE by 23.45%. (From 

MSE=35.93 to 28.39.)  

 

 

 

 

 
15 To ask for any amount of money less than $19 lead to s strictly lower payoff.  
16 See Appendix A.1 for detail of the argument.  
17 Our naïve player is defined in the same way as the random level0 player.  
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Action 11 12 13 14 15 16 17 18 19 20 MSE 

Level1 (%) 0 0 0 0 0 0 0 0 100 0 980.2 

Level2 (%) 0 0 0 0 0 0 0 100 0 0 620.2 

Level3 (%) 0 0 0 0 0 0 100 0 0 0 580.2 

𝑙𝑒𝑣𝑒𝑙𝑘 , 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0 0 0 0 0 0 40.7 38.7 20.6 0 35.93 

NE (%) 0 0 0 0 25 25 20 15 10 5 137.2 

NLK (%)18

(𝜆 = 0.6585)
 0 0 0 0 0 12.1 43.9 29.4 14.6 0 28.39 

Data (%) 4 0 3 6 1 6 32 30 12 6  

Table 3. 11-20 Game: Comparison of different solution concepts by MSE.  

 Finally, we further test the robustness of our results by an alternative statistical method. 

Our econometric specification follows the mixture-of-types models of Stahl and Wilson (1994, 

1995).19 

 Both levelk and our NLK types are assumed to make logistic errors as described below. 

The decision rule suggests that the choice probabilities of type t players are positively, but 

imperfectly, related to expected payoffs according to the specific beliefs of type t. Formally, denote 

the expected payoff player 𝑖  of type 𝑡 , given strategy 𝑠  by 𝜋𝑖
𝑡(𝑠).  Then, the probability of 

observing 𝑠 by such players is specified as follows: 

𝑝𝑖
𝑡(𝑠) =

exp (𝜂𝜋𝑖
𝑡(𝑠))

∑𝑠′∈𝑆𝑖
exp  (𝜂𝜋𝑖

𝑡(𝑠′))
 , 

where 𝑆𝑖  is the strategy set for player 𝑖  and 𝜂  is the parameter of precision. Specifically, 𝜂 

determines the sensitivity of choice probabilities to payoff differences.20 Exceptionally, random 

level0 directly specifies a uniform distribution of decisions, thus has no precision parameter. 

Alternatively, it is equivalent by specifying the precision parameter to be 0 for a random level0 

player. The Likelihood of observing sample {𝑠𝑖}𝑖=1
𝑁 , given type 𝑡 is 𝐿𝑡({𝑠𝑖}|𝜂) = ∏ 𝑝𝑖

𝑡(𝑠𝑖)
𝑁
𝑖=1 . 

 
18 We choose the value that minimizes the Mean Squared Errors (MSE), that is, the nonlinear least squares estimate 

of 𝜆. 
19 The same econometric specification was also adopted by Costa-Gomes, Crawford and Broseta (2001), Camerer, Ho 

and Chong (2004), Costa-Gomes and Crawford (2006) and Crawford and Iriberri (2007). The error model is developed 

from Quantal Response Equilibrium (See, e.g., Goeree, Holt and Palfrey 2008), and discussed in Goeree and Holt 

(2001). 
20 As 𝜂 goes to ∞, the probability of the optimal decision converges to 1. In other words, the choice is error-free and 

fully characterized by the model under consideration. At the other extreme, as 𝜂 goes to 0, the choice probability 

converges to a uniformly random choice as that of the random level0 players. 
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  Let 𝛼𝑡 denote the proportion of type t in the population, with ∑ 𝛼𝑡 = 1𝑡 . The Likelihood of 

observing the sample unconditional on type is ∏ ∑ 𝛼𝑡𝑝𝑖
𝑡(𝑠𝑖).𝑡

𝑁
𝑖=1   

 

Action Log-Likelihood (LL) The precision parameter (𝜂) BIC21 AIC22 

Level1  -233.970 
0.296

(0.039)
 472.622 469.940 

Level2  -226.245 
0.066

(0.009)
 457.172 454.490 

Level3  -221.220 
0.075

(0.010)
 447.122 444.440 

𝑙𝑒𝑣𝑒𝑙𝑘 , 𝑘 = 1,2

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 -218.100 

0.252
(0.052)

 445.564 440.200 

𝑙𝑒𝑣𝑒𝑙𝑘 , 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 -197.770 

0.207
(0.051)

 409.586 401.540 

NE  -230.040 
0.231

(0.046)
 464.762 462.080 

NLK 

(𝜆 = 0.85)
 -210.050 

0.359
(0.025)

 429.464 424.100 

Table 4. Comparison of different solution concepts by Maximum Log-Likelihood 

 

The results are reported in Table 4. With an error structure, the best single type Level-K 

model with 𝑘∗ = 3 has a smaller Log-likelihood and a precision parameter, 𝐿𝐿 = −221.275,  

𝜂 = 0.075  than those of NLK with the best 𝜆∗ = 0.85:  𝐿𝐿 = −210.05, 𝜂 = 0.359. NLK also 

outperforms Level-K model with the optimal distribution of level1 and level2:
23 𝐿𝐿 = −218.093,

𝜂 = 0.252. But, letting Level-K use two parameters, and optimal distribution, of level1 level2 and 

level3, raises its LL to, −197.77, which is larger than that of NLK with only one parameter, 

−210.05. Yet,  NLK still has a higher precision, 𝜂 = 0.231, than that of Level-k, 𝜂 =0.207.24 The 

results are robust when consider BIC and AIC instead of LL.   

 
21 𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝐿𝐿, 𝑘 is the number of free parameters to be chosen and 𝑛 is the number of observations.  
22 𝐴𝐼𝐶 = 2𝑘 − 2𝐿𝐿, 𝑘 is the number of free parameters to be chosen 
23 It is estimated to be 85% level1 and 15% level2 types.  
24 It is estimated to be 46% level1, 24.45% level2 and 28.98% level3 types.  
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4. The Centipede Game 

 Introduced by Rosenthal (1981), the Centipede Game is an example where deviations from 

Backward Induction (or SPNE) seem reasonable.25 Following the bulk of the literature, we study 

a version of the Centipede Game, where the total payout doubles when the game continues to the 

next stage, which subsumes the game in the experiment of both Palacios-Huerta and Volij (2009) 

and Levitt, List, and Sadoff (2011), as a special case (with six decision nodes). 

 There are two players, A and B, with an initial pot worth $5. At Node 1, Player A moves 

and chooses either to stop the game (T) by taking 80% of the pot and leaving 20% of it to Player 

B, or pass the game (P) to Player B and doubling the pot. If Player A chooses P, then at Node 2, 

Player B faces a similar decision but with a pot now worth $10. Unless one of the players chooses 

T earlier, the game ends after S=2N stages, with Player B either choosing T, taking 80% of the pot 

and leaving the other 20% to Player A, or choosing P and doubling the pot, with the result that 

20% of the pot goes to Player B and 80% of it goes to Player A. The payoffs for Players A and B 

are ($22𝑘, $2𝑠𝑘−2) if the game ends at an odd decision node, 2𝑘 − 1, and ($22𝑘−1, $2𝑠𝑘+1) if the 

game ends at an even decision node, 2𝑘, 𝑘 = 1, 2, … , 𝑁 − 1. By backward induction, the unique 

SPNE strategy profile for Player A is to play T immediately, at node 1, and off equilibrium, the 

active player always chooses T at each node. 

Following the dynamic Level-K model by Ho and Su (2013), it is equally likely that a 

level0 player will choose T or P at each decision node, and strategies of  𝐾 > 0 are generated from 

iterative best responses to a player of one level below. Level1 Player B would choose T at the last 

node.26 Denote the whole pie at each decision node by 𝑥. A level1 Player A, playing T at node 

(2𝑁 − 1) yields 
4𝑥

5
, where playing P yields 

9𝑥

5
, so a level1 Player A would choose P at the decision 

node (2𝑁 − 1). Similarly, a level₂ Player A would choose T at the penultimate node (2N-1). 

Table 5 summarizes the solution for the Level-K model for a game of length 𝑆 = 2𝑁. For 

a certain level of players (indicated in the second column), there exists a corresponding threshold 

stage (indicated in the first column). A levelk player chooses P before the threshold stage 𝑠∗, but 

T at stage 𝑠∗ and afterward. For example, in a six-stage game (𝑁 = 3), the threshold stage for a 

 
25 For additional literature, see McKelvey and Palfrey (1992), Fey, McKelvey, and Palfrey (1996), Nagel and Tang 

(1998), Borstein, Kugler, and Ziegelmeyer (2004), and Rapoport, Stein, Parco, and Nicholas (2003). These papers 

show that even in high-stakes situations, involving altruism or group decisions, Backward Induction is still inadequate 

to explain players’ behavior. 
26 To end the game at Node 2𝑁, Player B gets payoff $22𝑁+1, while he only ends up with $22𝑁 if he chooses P instead 
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level3 (𝑘 = 3, ℎ = 1) Player A is 2(3 − 1) + 1 = 5. So, a level3 Player A chooses P before Node 

5 and T at Node 5.  

Role Threshold stage s The level of players 

Player A 2(𝑁 − ℎ) + 1 
𝑘 = 2ℎ∗ 𝑜𝑟 2ℎ + 1
(1 ≤ ℎ ≤ 𝑁 − 1)

  

Player B 2(𝑁 − ℎ) + 2 
𝑘 = 2ℎ∗ − 1 𝑜𝑟 2ℎ

(1 ≤ ℎ ≤ 𝑁)
 

ℎ∗ is an auxiliary parameter for indicating the same threshold stage of two adjacent levels. 

Table 5. Threshold stage for different levels of players.  

 

In addition, a Player A, at level 𝑘 = 2𝑁 or higher, and a Player B at 𝑘 = (2𝑁 − 1) or higher, ought 

to choose T at each decision node. The Level-K solution requires relatively high levels27  to 

rationalize terminating the game at earlier stages, especially for longer games, since the strategies 

of different level players are independent of the length of the game. For example, no matter how 

long the game is, a level1 Player A ought to keep passing to the last decision node, and no matter 

what the observed history is, a levelk player never updates his belief. 28 

 Consider a simple version of PBNLK with symmetric beliefs, 0 < 𝜆 < 1. At the last stage, 

T is the best response for Player B regardless of his belief about his opponents’ type. Assume now 

that Player B first chooses T at Stage 2𝑛 and Player A plans to choose T at Stage (2𝑛 + 1). Then, 

at stage (2𝑛 − 1), Player A’s posterior belief of the opponent being level0 is  

(3)                    𝑝𝐴
𝜆(2𝑛 − 1) =

𝜆(
1

2
)

𝑛−1

𝜆(
1

2
)

𝑛−1
+(1−𝜆)

= [
(

1

2
)

𝑛−1

(
1

2
)

𝑛−1
+

(1−𝜆)

𝜆

] ∈ (0, 𝜆).  

 If Player B first plays T at Stage 2𝑛, then at Stage (2𝑛 − 1), Player A gets 
4𝑥

5
 by playing 

T, while by playing P now and T at  (2𝑛 + 1) yields the expected payoff: 

[
𝑝𝐴

𝜆(2𝑛 − 1)

2
+ 1 − 𝑝𝐴

𝜆(2𝑛 − 1)]
2𝑥

5
+ 𝑝𝐴

𝜆(2𝑛 − 1)
1

2
×

4

5
× 4𝑥 =

2𝑥

5
+ 𝑝𝐴

𝜆(2𝑛 − 1)
7𝑥

5
 

 Thus, Player A plays P whenever 
2

7
< 𝑝𝐴

𝜆(2𝑛 − 1) ≤ 1 and plays T otherwise. Moreover, 

since 𝑝𝐴
𝜆(2𝑁 − 1) decreases in 𝑁 for a given 𝜆, then, in a longer game, and NLK Player A (with a 

 
27 Table 5 also entails that to increase the level by just 1 would not necessarily predict earlier termination. Two adjacent 

levels of players might behave the same way.  
28 One may argue that the more general Cognitive Hierarchy (CH) solution concept would produce qualitatively 

different predictions. However, since beliefs put more weight on lower levels according to a Poisson distribution in 

CH and lower levels continue passing to later stages, an even higher level of players than in the Level-K model would 

be required to rationalize early termination. 
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certain 𝜆) is more likely to play T at stage (2𝑁 − 1). This result is a key difference between NLK 

and the Level-K model where a level1 Player A always passes at stage (2𝑁 − 1) no matter how 

long the game is. Since 𝑝𝐴
𝜆(2𝑛 − 1)(≤ 𝜆) is strictly decreasing in 𝑛, and 𝑝𝐴

𝜆(2𝑛 − 1)𝑛→∞ = 0, 

then for 𝜆 ≤
2

7
, Player A would always play T, given that Player B plays T at the next sage. For 

𝜆 >
2

7
, by continuity, there is a critical value 𝑛𝐴 , such that 𝑝𝐴

𝜆(2𝑛 − 1) >
2

7
 for 𝑛 < 𝑛𝐴 , and 

𝑝𝐴
𝜆(2𝑛 − 1) ≤

2

7
 for 𝑛 ≥ 𝑛𝐴. 

 Similarly, assume that Player A first chooses T at Stage (2𝑛 + 1), (𝑛 ≤ 𝑁 − 1) and Player 

B plans to choose T at stage (2𝑛 + 2). Then at Stage 2𝑛, Player B’s posterior belief that the 

opponent is level0 is  

𝑝𝐵
𝜆(2𝑛) =

𝜆 (
1
2)

𝑛−1

𝜆 (
1
2)

𝑛−1

+ (1 − 𝜆)

= 𝑝𝐴
𝜆(2𝑛 + 1). 

 This implies that the threshold stage for Player B, 𝑠𝐵
∗  is one stage earlier than that of Player 

A, 𝑠𝐴
∗, i.e., 𝑠𝐵

∗ = (2𝑛𝐵) = (2𝑛𝐴 − 1) − 1 = 𝑠𝐴
∗ − 1. 

 We use these arguments to construct our PBNLK equilibrium. For 𝜆 = 0, the game ends 

at the first stage (the same result as in SPNE).29 For 𝜆 > 0, there are two possibilities. In a short 

game with a relatively larger 𝜆 satisfying 𝑝𝐴
𝜆(2𝑁 − 1) >

2

7
, Player A plays P to the end, and Player 

B first plays T at the last stage (the same result as when both players are level1). In a longer game 

with 𝑝𝐴
𝜆(2𝑁 − 1) ≤

2

7
, the game would end earlier. For similar arguments as in Kreps, Milgrom, 

Roberts, and Wilson (1982) paper,30 PBNLK must be in mixed strategies for this range of 𝜆. The 

reason is that in a presumed pure strategy PBNLK, and NLK player (who ought to play T earlier 

than the other player) would rather deviate in the first node she ought to play T and lay P instead. 

Doing so would mislead the other player to believe that he is facing a level0 player (as only a level0 

player would have played P in the last node) and thus the other NLK player would play P.31  

 
29 The off-equilibrium path will not be reached by an NLK player (A or B) whether her opponent is another NLK 

player or a naive player. So, it is not restricted by Definition 1.4 of consistency. We assume that an NLK player 

believes the other NLK player would always play T off the equilibrium path. 
30 Inserting a “crazy” type even with a slight probability can rationalize long cooperation in the finitely repeated 

prisoners’ dilemma games.  
31 For example, consider the case when the threshold stage of Player B is 4 and (it follows) that of Player A is 5, Now 

at Node 5, which is reachable for Player A when facing a level0 player, since Player B first choose T at 4, not 6, the 

belief 𝑃𝐴
𝜆(5) represented by Equation 1.3 no longer satisfies our consistency requirement. Upon reaching Node 5, by 
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 We apply our model to experimental by Palacios-Huerta and Volij (2009) and Levitt, List, 

and Sadoff (2011) on the Centipede Game, where N=3 as in Figure 1. 

 

Figure 1. The Centipede Game32 

 

 The prediction of our PBNLK with all λ ∈ {0.05𝑛}𝑛=0,1,2,…,20 and the Level-K model with 

all k ∈ ℵ+ as well as data from the above-mentioned two papers are summarized in Table 6. When 

λ = 0 , PBNLK coincides with SPNE and levelk, k ≥ 6 , and when λ ∈ [0.615, 1] , PBNLK 

coincides with level1. For all other λ ∈ (0, 0.615), PBNLK generates different predictions. We 

first compare predictions to data from Palacios-Huerta and Volij’s laboratory experiment with four 

treatments. Unlike other experiments of the Centipede Game, in their work, the composition of 

two opponents varies33 across treatments, and it is common knowledge among all players. This 

allows us to explore how belief represented by λ and the results change as the nature of the subject 

pool changes. Next, we compare predictions to data from Levitt, List, and Sadoff’s field 

experiments of chess players to further evaluate the predictions of NLK, since the data are quite 

different from the former experiment data. 

 

 

 

 

 

 
Bayes’ rule, an NLK Player A confirms that her opponent is a level0 player for sure, so she would pass instead. Thus, 

at decision Node 4, an NLK Player B has an incentive to pass with a positive probability to mimic the level0 player 

which motivates an NLK Player A to pass with a positive probability at decision Node 5, as well.  
32 This is the same example from Palacios-Huerta and Volij (2009). Source: Drawn using Microsoft Visio. 
33 See Table 6 for detail. The two opponents are chess players or students. 
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Data or Prediction Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

𝑁𝐿𝐾
(λ = 0)

or 
𝑙𝑒𝑣𝑒𝑙𝑘

(k ≥ 6)
 1* 1 1 1 1 1 

𝑁𝐿𝐾
(λ = 0.05)

 0 0.704 0.867 0.899 0.892 1 

𝑁𝐿𝐾
(λ = 0.1)

 0 0.375 0.877 0.889 0.938 1 

𝑁𝐿𝐾
(λ = 0.15)

 0 0.007 0.889 0.889 0.999 1 

𝑁𝐿𝐾
(λ = 0.2)

 0 0 0 0.844 0.879 1 

𝑁𝐿𝐾
(λ = 0.25)

 0 0 0 0.792 0.887 1 

𝑁𝐿𝐾
(λ = 0.3)

 0 0 0 0.732 0.895 1 

𝑁𝐿𝐾
(λ = 0.35)

 0 0 0 0.663 0.905 1 

𝑁𝐿𝐾
(λ = 0.4)

 0 0 0 0.583 0.916 1 

𝑁𝐿𝐾
(λ = 0.45)

 0 0 0 0.489 0.930 1 

𝑁𝐿𝐾
(λ = 0.5)

 0 0 0 0.375 0.946 1 

𝑁𝐿𝐾
(λ = 0.55)

 0 0 0 0.236 0.966 1 

𝑁𝐿𝐾
(λ = 0.6)

 0 0 0 0.0625 0.991 1 

𝑁𝐿𝐾   𝑜𝑟 𝑙𝑒𝑣𝑒𝑙1

(0.615 < λ ≤ 1)
 0 0 0 0 0 1 

 

Continued 

Table 6. Centipede Game-Prediction and Data 
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Table 6 Continued 

Data or Prediction Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

𝑙𝑒𝑣𝑒𝑙2 0 0 0 0 1 1 

𝑙𝑒𝑣𝑒𝑙3 0 0 0 1 1 1 

𝑙𝑒𝑣𝑒𝑙4 0 0 1 1 1 1 

𝑙𝑒𝑣𝑒𝑙5 0 1 1 1 1 1 

Data** (S vs S) 
0.030 ∗∗∗

(200)
 

0.17
(194)

 
0.42

(161)
 

0.65
(93)

 
0.82
(33)

 
0.83
(6)

 

Data (S vs C) 
0.30

(200)
 

0.52
(140)

 
0.61
(67)

 
0.69
(26)

 
1.00
(8)

 - 

Data (C vs S) 
0.375
(200)

 
0.44

(125)
 

0.56
(70)

 
0.61
(31)

 
1.00
(12)

 - 

Data (C vs C) 
0.725
(200)

 
0.64
(55)

 
0.90
(20)

 
1.00
(2)

 - - 

Data****(Field) 
0.039
(102)

 
0.102
(98)

 
0.193
(88)

 
0.352
(71)

 
0.587
(46)

 
0.632
(19)

 

 
Note: * presents predicted probabilities of playing T at each node by the model. Columns correspond to the probability 

that a player is predicted to play T upon reaching that node. Odd nodes refer to Player A’s choices, while even nodes 

refer to Player B’s choices.  

** The data is from Palacios-Huerta and Volij (2009). S represents students and C represents chess players. S vs C 

represents the situation when Player A is a student and Player B is a chess player. The other way around, C vs S is 

when Player A is a chess player and Player B is a student.  

*** shows the distribution of implied stop probabilities for players in the Centipede Game. The number of 

opportunities observed is displayed in the parentheses below. 

**** The data is from the field Centipede Game of chess players by Levitt, List, and Sadoff (2011). 

 

Referring to Ho and Su (2013), we define a measure, 𝐷(𝐻, 𝑀, 𝐺𝑆), to quantify the deviation 

of data 𝐻 from the model’s prediction, 𝑀 in Centipede Game 𝐺𝑆 with 𝑆 decision nodes as follows: 

𝐷(𝐻, 𝑀, 𝐺𝑆) = ∑ 𝑤𝑠
𝐻𝑑𝑠(𝑝𝑠

𝐻, 𝑝𝑠
𝑀)𝑆

𝑠=1  , 𝑤𝑠
𝐻 =

𝑛𝑠
𝐻

∑ 𝑛𝑘
𝐻𝑆

𝑘=1

 , 𝑑𝑠(𝑝𝑠
𝐻, 𝑝𝑠

𝑀) = |𝑝𝑠
𝐻 − 𝑝𝑠

𝑀|, 

where 𝑛𝑠
𝐻 is the number of observations at each stage, given by data 𝐻, 𝑑𝑠(𝑝𝑠

𝐻, 𝑝𝑠
𝑀) is the distance 

of stopping probabilities at stage s between data 𝐻 and the prediction of model M measured by 

their absolute difference |𝑝𝑠
𝐻 − 𝑝𝑠

𝑀|. 
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Continued 

Table 7. Centipede Game-Prediction for different models 

 

 

 

Models 
Data  

(S vs S) 

Data  

(S vs C) 

Data  

(C vs S) 

Data  

(C vs C) 

Data 

(Field) 

𝑁𝐿𝐾
(λ = 0)

or 
𝑙𝑒𝑣𝑒𝑙𝑘

(k ≥ 6)
 0.7102 0.5474 0.5431 0.2773#∗ 0.7760 

𝑁𝐿𝐾
(λ = 0.05)

 0.3016 0.2478 0.3191 0.5393 0.4296 

𝑁𝐿𝐾
(λ = 0.1)

 0.2132 0.2361# 0.2619# 0.5785 0.3589 

𝑁𝐿𝐾
(λ = 0.15)

 0.2071 0.3536 0.3672 0.6500 0.3269 

𝑁𝐿𝐾
(λ = 0.2)

 0.1857 0.4051 0.4062 0.7166 0.2036 

𝑁𝐿𝐾
(λ = 0.25)

 0.1791 0.4019 0.4023 0.7170 0.1946 

𝑁𝐿𝐾
(λ = 0.3)

 0.1714 0.3982 0.3978 0.7175 0.1866 

𝑁𝐿𝐾
(λ = 0.35)

 0.1625# 0.3971 0.3927 0.7181 0.1761 

𝑁𝐿𝐾
(λ = 0.4)

 0.1703 0.4016 0.3905 0.7185 0.1638 

𝑁𝐿𝐾
(λ = 0.45)

 0.1837 0.4069 0.3968 0.7192 0.1497 

𝑁𝐿𝐾
(λ = 0.5)

 0.1999 0.4134 0.4044 0.7200 0.1323# 

𝑁𝐿𝐾
(λ = 0.55)

 0.2197 0.4212 0.4137 0.7210 0.150 

𝑁𝐿𝐾
(λ = 0.6)

 0.2444 0.4310 0.4253 0.7222 0.1818 

𝑁𝐿𝐾   𝑜𝑟 𝑙𝑒𝑣𝑒𝑙1

(0.615 < λ ≤ 1)
 0.2840 0.4526 0.4569 0.7227 0.2121 
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Table 7 Continued 

𝑙𝑒𝑣𝑒𝑙2 0.2533 0.4345 0.4295 0.7227 0.1933* 

𝑙𝑒𝑣𝑒𝑙3 0.2127* 0.4121 0.4139 0.7155 0.2428 

𝑙𝑒𝑣𝑒𝑙4 0.2502 0.3787* 0.3947* 0.6578 0.3703 

𝑙𝑒𝑣𝑒𝑙5 0.4366 0.3660 0.4290 0.6022 0.5540 

𝑙𝑒𝑣𝑒𝑙𝑘 , 𝑘 = 1,2

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0.2446 0.4345 0.4295 0.7227 0.1484 

𝑙𝑒𝑣𝑒𝑙𝑘 , 𝑘 = 1,2,3,

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 0.1567 0.3946 0.3872 0.7155 0.0895 

Note: * and # indicate the best prediction of a single type Level-K and NLK, respectively.   

 

 Table 7 presents the result of 𝐷(𝐻, 𝑀, 𝐺𝑆) calculated using PBNLK and Level-K model 

with 5 different data sets above.  In the lab experiments when opponents are students (Column 2), 

PBNLK with λ = 0.35 gives the most precise prediction (𝐷 = 0.1625), which is better than the 

best prediction of the single type Level-K model (𝑘 = 3, 𝐷 = 0.2127); in the treatment when 

chess players and students play with each other (Column 3 and 4), PBNLK with λ = 0.1 fits the 

data the best (𝐷𝑆 𝑣𝑠 𝐶 = 0.2361, 𝐷𝐶 𝑣𝑠 𝑆 = 0.2619  ), which is more accurate than the Level-K 

model with an optimal 𝑘 = 4 (𝐷𝑆 𝑣𝑠 𝐶 = 0.3787, 𝐷𝐶 𝑣𝑠 𝑆 = 0.3947  ); when the opponents are 

chess players, the best fit goes to the case when PBNLK (λ = 0), SPNE and the levelk type, (𝑘 ≥

6)  coincide (𝐷 = 0.2773) . For the field data, PBNLK with λ = 0.5  gives the most precise 

prediction (𝐷 = 0.1323), which is more accurate than the best prediction of the Level-K model 

with an optimal 𝑘 = 2  (𝐷 = 0.1933). Moreover, in all 5 datasets, the optimal PBNLK performs 

better than the Level-K with an optimal distribution of level1 and level2 types. When we allow the 

Level-K model to have one more parameter, the optimal PBNLK still performs better the Level-K 

with an optimal distribution of level1, level2 and level3 in three datasets (Column 2, 3, 4) except 

for the lab experiments when opponents are students and the field data.  

 Our solution concept provides an alternative explanation for cases where neither the 

original Level-K model nor backward induction applies. Note that we constrained NLK by using 

only symmetric beliefs. However, it is reasonable for each group to have a different subjective λ 

in cases where students interact with chess players, wherein we conjecture that NLK would 
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perform even better by allowing for heterogeneous beliefs, but accounting for additional 

parameters.  

5. Common Value Auction 

 Avery and Kagel (1997, AK afterward) conducted a laboratory experiment using a 

Common-Value, Second-Price Auction, the Wallet Game. In their design, there are two bidders, 

𝑖 = 1,2, each privately observes a signal 𝑋𝑖 that is drawn i.i.d from a uniform distribution on [1, 4]. 

The common-value is the sum of the two private signals, that is, 𝑣𝑖(𝑥1, 𝑥2) = 𝑣(𝑥1, 𝑥2) = 𝑥1 +

𝑥2 . Let 𝑣(𝑥, 𝑦) = 𝑥 + 𝑦 , and r(x) = x + E[𝑋2] = 𝑥 + 2.5.  𝑣(𝑥, 𝑥) ≡ 𝑏(𝑥) = 2𝑥  is the unique 

symmetric BNE,34 and with just two bidders, 𝑏(𝑥) = 2𝑥, is an ex-post equilibrium, independent 

of signals’ distribution, risk attitude and with no regret. AK defines Naïve bidding by 𝑟(𝑥) = 𝑥 +

2.5, representing a naïve bidder who assumes that whenever she wins, the other bidder’s signal is 

at its expected value (2.5). It turns out that 𝑟(𝑥) is also the level1 player’s strategy in Crawford and 

Iriberri (2007, CI afterward), the best response to a level0 player who bids uniformly randomly on 

[1, 4]. We denote by 𝑏𝜆(∙) the strategy in a 𝜆-BNLK equilibrium and solve the symmetric linear 

strategy. (The details are provided in Appendix A.2.) 

 The data produced by AK is evaluated using the CE model by Eyster and Rabin (ER, 2005) 

and the Level-K by Crawford and Iriberri (CI, 2007). ER show that for any cursed level, 0 < χ ≤

1, their CE predicts better than BNE (i.e. CE with χ = 0) and that for a given χ, CE fits better for 

experienced, rather than for inexperienced subjects, with respect to the Mean Squared Error 

(MSE). For data on only inexperienced bidders, CI use the Level-K with a logistic error structure 

and a subject-specific precision. They compare their model using the best mixture of 5 types, 

including random level1 and level2,
35 truthful level1 and level2,

36 and BNE players and show that it 

outperforms CE (with the best mixture of types, such that χ ∈ {0.1, 0.2, … ,0.9,1.0}), using both 

likelihood and the Bayesian Information Criterion (BIC).37 

 

 
34 Refer to Milgrom and Weber (1982). 
35 Random level1 and level2 are generated iteratively by best responding to a random level0, as considered in this 

paper. 
36 Truthful level1 and level2 are generated iteratively by best responding to a truthful level0 who always bids her 

signal: 𝑏(𝑥) = 𝑥. 
37 BIC penalize models with more parameters to adjust the likelihood.  
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Models 𝑏(𝑥) 
MSE  

(inexperienced) 

MSE  

(experienced) 

𝑁𝐿𝐾
(λ = 0)

or NE 2x 2.897 1.171 

𝑁𝐿𝐾
(λ = 0.05)

 1.951x+0.122 2.823 1.124 

𝑁𝐿𝐾
(λ = 0.1)

 1.904x+0.239 2.756 1.082 

𝑁𝐿𝐾
(λ = 0.15)

 1.859x+0.352 2.693 1.042 

𝑁𝐿𝐾
(λ = 0.2)

 1.815x+0.462 2.634 1.010 

𝑁𝐿𝐾
(λ = 0.25)

 1.772x+0.570 2.579 0.978 

𝑁𝐿𝐾
(λ = 0.3)

 1.730x+0.676 2.531 0.953 

𝑁𝐿𝐾
(λ = 0.35)

 1.688x+0.781 2.484 0.927 

𝑁𝐿𝐾
(λ = 0.4)

 1.646x+0.886 2.440 0.906 

𝑁𝐿𝐾
(λ = 0.45)

 1.604x+0.990 2.396 0.889 

𝑁𝐿𝐾
(λ = 0.5)

 1.562x+1.096 2.356 0.872 

𝑁𝐿𝐾
(λ = 0.55)

 1.519x+1.203 2.320 0.859 

𝑁𝐿𝐾
(λ = 0.6)

 1.475x+1.313 2.286 0.848 

𝑁𝐿𝐾
(λ = 0.65)

 1.430x+1.426 2.250 0.840 

𝑁𝐿𝐾
(λ = 0.70)

 1.383x+1.543 2.220 0.835 

𝑁𝐿𝐾
(λ = 0.75)

 1.333x+1.667 2.190 0.834* 

𝑁𝐿𝐾
(λ = 0.80)

 1.281x+1.798 2.164 0.835 

Continued 

Table 8. Model comparison for the wallet game. 
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Table 8 Continued 

𝑁𝐿𝐾
(λ = 0.85)

 1.224x+1.940 2.137 0.843 

𝑁𝐿𝐾
(λ = 0.90)

 1.161x+2.098 2.117 0.857 

𝑁𝐿𝐾
(λ = 0.95)

 1.088x+2.280 2.097 0.882 

𝑁𝐿𝐾
(λ = 1)

or level1 x+2.5 2.085#∗ 0.922#∗ 

level2 {
3.5 𝑖𝑓 𝑥 < 2.5
6.5 𝑖𝑓 𝑥 > 2.5

 2.955 1.381 

Level3 {
< 3.5 𝑖𝑓 𝑥 < 2.5
> 6.5 𝑖𝑓 𝑥 > 2.5

 -  

Data (inexperienced) 
0.997

(0.079)
x+

2.950
(0.203)

 1.899  

Data(experienced) 
1.313

(0.053)
x+

2.023
(0.150)

 - 0.745 

 

 Table 8 compares the prediction of 𝜆-BNLK (with all 𝜆 ∈ {0.05n}𝑛=0,1,2,…,20) and the 

Level-K model. As shown, the optimal bidding of a level2 player already reduces to a boundary 

solution (the objective function becomes a linear function), where all bidders with a value lower 

than 2.5 bid 3.5 and the others (with a value higher than 2.5) bid 6.5. For a level3 player, when her 

signal is smaller than 2.5, she bids any number below 3.5, (expecting to lose), while bidding any 

number above 6.5 when her signal is larger than 2.5 (expecting to win). The predictions are 

ambiguous for higher levels. In contrast, there always exists a symmetric linear strategy for our 𝜆-

BNLK players.  

 Table 8, Figures 2 and 3, show that for inexperienced bidders (using the first 18 periods), 

the most accurate prediction of BNLK is with 𝜆 = 1, and it coincides with level1 (MSE=2.085)38. 

For experienced bidders (using periods 19-42), BNLK with 𝜆 = 0.75  fits the data the best 

 
38 We choose the value of 𝜆 that minimizes the Mean Squared Errors (MSE), that is, the nonlinear least squares 

estimate of 𝜆. 

Electronic copy available at: https://ssrn.com/abstract=2934696



25 

 

(𝑀𝑆𝐸 = 0.834) which is better than the most precise prediction of the Level-K (𝑘 = 1, 𝑀𝑆𝐸 =

0.922).  

 

Figure 2. MSE of BNLK with Different λ: inexperienced bidders. 

 

Figure 3. MSE of BNLK with different λ: experienced bidders. 

  

 

 

Electronic copy available at: https://ssrn.com/abstract=2934696



26 

 

6. Conclusion 

 This paper proposes a new solution concept, NLK that connects NE and the Level-K. It 

allows a player to believe that her opponent may be less, or as sophisticated, as herself, a view 

with support in psychology. NLK is well-defined in both static and dynamic games, making it easy 

to apply to the data from four published papers on static, dynamic, and auction games. In all four 

cases, NLK provides better predictions than those of NE and the Level-K, except for few cases 

when predictions coincide or when we allow the Level-K to choose freely more parameters 

NLK allows having other beliefs on the naïve player and can be extended to having 

heterogeneous beliefs about opponents who are from distinct samples, and to games with more 

than two players.  

Comparing across applications to experimental data, it appears that the “best fitting” 𝜆 

depends on the particular game played and the population of players. Our intuition and the limited 

evidence that we have so far suggest that, ceteris paribus, we ought to expect a smaller λ in simpler 

games requiring less cognitive/strategical sophistication, or with more sophisticated/experienced 

(e.g., chess) players. For instance, in the common-value auction with inexperienced bidders, 𝜆 =

1 provides the best fit, but with experienced bidders, 𝜆 = 0.75 fits better.  We also find that in the 

Centipede game the best 𝜆s are smaller than those in the common-value auction. It suggests that 

further experimental research is needed with the same, or similar, games with similar populations, 

to estimate the optimal 𝜆, to provide more evidence and tests for external validity. 39 

  

 
39 For instance, Brünner (2018) documents the consistent good performance of NLK in two similar games with the 

same 𝜆: a regular rank-order tournament and the version with an outside option. 
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Appendix A  

A.1. Solve for 𝝀-NLK equilibrium in the Money Request Game 

We only go through the solution for 0 ≤ 𝜆 <
1

2
, since a similar argument follows for 

1

2
≤ 𝜆 < 1. 

 We first claim that when 0 ≤ 𝜆 <
1

2
, $20 must be played by an NLK player. Assume for 

contraction that $20 will not be played, then deviation to $20 would end up with $20 for sure 

whereas choosing $19 generates $19+ 𝜆 ×
1

10
× 20(< 20). So, $19 will not be played by an NLK 

player. By induction, no strategy is valid for an NLK player. This is a contradiction.40 So $20 must 

be played by an NLK player. But $20 couldn’t be the only pure strategy of an NLK player since 

he has an incentive to deviate to $19. Assume that 𝑗 < 19 is the largest number that is played with 

positive probability. Hence deviating to $19 generates strictly larger payoff. Then $19 must be 

played with positive probability. Denote the probability of playing $j in the NLK equilibrium by 

𝛽𝑗 , 𝛽𝑗 ∈ [0, 1] and  ∑𝛽𝑗 = 1. The expected payoff of all strategies in equilibrium should be the 

 
40 Since the game is finite, by Proposition 1, NLK exists.  
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same, and since playing $20 yields $20 for sure, it follows: 19 + (1 − 𝜆)𝛽2020 + 𝜆
20

10
= 20. Then 

𝛽20
∗ =

1−2𝜆

(1−𝜆)20
< 1. By the same argument, 18 + (1 − 𝜆)𝛽1920 + 𝜆

20

10
= 20. Then 𝛽19

∗ =
2−2𝜆

(1−𝜆)20
. 

Because 𝛽20
∗ + 𝛽19

∗ < 1 , $18 has to be played in equilibrium (otherwise there would be an 

incentive to deviate to $18), so iteratively, we get 𝛽18
∗ =

3−2𝜆

(1−𝜆)20
, 𝛽17

∗ =
4−2𝜆

(1−𝜆)20
, 𝛽16

∗ =
5−2𝜆

(1−𝜆)20
. 

Suppose $14 is played in equilibrium too, then 14 + (1 − 𝜆)𝛽1520 + 𝜆
20

10
= 20  implies that 

𝛽15 =
6−2𝜆

(1−𝜆)20
. But in this case, ∑ 𝛽𝑗

20
𝑗=15 > 1. This is a contradiction. So $14 (and all lower 

numbers) would not be played by an NLK player. Then  𝛽15
∗ = 1 − ∑ 𝛽𝑗

20
𝑗=16 =

5−10𝜆

(1−𝜆)20
.  In 

conclusion, when  0 ≤ 𝜆 <
1

2
, there is a unique mixed-strategy for an NLK player where  

{𝜎𝑖
∗} = { 𝛽15

∗ , 𝛽16
∗ , 𝛽17

∗ , 𝛽18
∗ , 𝛽19

∗ , 𝛽20
∗ } = {

5−10𝜆

(1−𝜆)20
,

5−2𝜆

(1−𝜆)20
,

4−2𝜆

(1−𝜆)20
,

3−2𝜆

(1−𝜆)20
,

2−2𝜆

(1−𝜆)20
,

1−2𝜆

(1−𝜆)20
}. 

A.2. Solve for 𝝀-NLK equilibrium in the Common-Value Auction  

 Assume there is a linear pure strategy for a 𝜆-NLK player, denote it as 𝑏𝜆(𝑥) = 𝑏𝜆(1) +

𝑏𝜆(4)−𝑏𝜆(1)

3
(𝑥 − 1), 𝑥 ∈ [1, 4]. Denote 𝑑𝜆 = 𝑏𝜆(4) − 𝑏𝜆(1).The probability that the opponent is 

level0 conditional on a tie is 𝑞𝜆 = Pr(𝑟𝑖𝑣𝑎𝑙 = 𝑙𝑒𝑣𝑒𝑙0|𝑡𝑖𝑒 𝑎𝑡 𝑏𝑖𝑑 = 𝑏) =
𝜆/6

𝜆/6+(1−𝜆)/𝑑𝜆 , 𝑏 ∈

[𝑏𝜆(1), 𝑏𝜆(4) ] ⊆ [2, 8] . Then by indifference in the case of Maximum Willingness to Pay 

conditional on a tie, denoted by 𝑀𝑊𝑃(𝑋) = 𝑏(𝑥): 

MWP(1)= 𝑞𝜆(1 + 2.5) + (1 − 𝑞𝜆)2 = 1.5𝑞𝜆 + 2 = 𝑏𝜆(1), 

MWP(4)= 𝑞𝜆(4 + 2.5) + (1 − 𝑞𝜆)8 = 8 − 1.5𝑞𝜆 = 𝑏𝜆(4). 

Then 𝑑𝜆 = 𝑏𝜆(4) − 𝑏𝜆(1) = 1 − 3𝑞𝜆 =
𝜆/6

𝜆/6+(1−𝜆)/𝑑𝜆. 

Then (𝑑𝜆)
2

+ 3
2−3𝜆

𝜆
𝑑𝜆 −

36(1−𝜆)

𝜆
= 0. 
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 So, the bidding strategy is  𝑏𝜆(𝑥) = 𝑏𝜆(1) +
𝑑𝜆

3
(𝑥 − 1), where 𝑏𝜆(1) = 1.5𝑞𝜆 + 2, 𝑑𝜆 =

3

2𝜆
(3𝜆 + √−7𝜆2 + 4𝜆 + 4 − 2) and 𝑞𝜆 = (1 − 𝑑𝜆)/3.  

A.3. Comparing Other Related Literature  

 Eyster and Rabin (2005), proposed Cursed Equilibrium (CE) that also relaxes the 

restriction on beliefs in NE, while maintaining the equilibrium concepts for players’ strategies. 

They show that CE rationalizes behavior (data) from experiments where BNE fails. In particular, 

this rationalization occurs in Common-Value Auctions, where Kagel and Levin (2002) found 

systematic overbidding and losses, a phenomenon called the Winner's Curse. CE also fits 

experimental data from voting and signaling models better than BNE. In one extreme version of 

CE, entitled as “fully CE,” people correctly predict other players’ distribution of actions, but ignore 

the correlation between actions and the specific players’ types who chose those actions. In their 

general model, χ-CE, beliefs are a weighted average of beliefs in fully cursed opponents (with 

weight  𝜒 ) and Bayesian Nash opponents (with weight (1 − 𝜒) ). The CE characterizes 

heterogeneous behaviors by different cursed levels (with 𝜒 = 1 being fully cursed, and 𝜒 = 0 

being BNE). However, CE reduces to NE when there is complete information. Hence it cannot be 

applied to explain deviations from NE in both static and dynamic games with complete 

information. Conceptually, the CE models bounded rational agents as only partially taking into 

account how other players’ actions depend on their type. In contrast, NLK allows a player to 

consider the possibility that the other player is a naive player or another NLK player like herself. 

Kets (2017) extends the type space tracing back to Harsanyi (1976) by allowing players to have 

finite instead of infinite depth of reasoning. However, different from NLK, it required that the 

depth of reasoning is the same for all players and beliefs that the other player might be less 

sophisticated is not allowed.  

 For application to dynamic games with perfect information and recall, Analogy-Based 

Expectation Equilibrium (ABEE), a solution concept proposed by Jehiel (2005), is the most closely 

related to ours.41 In ABEE, agents first group the set of opponents’ decision nodes into a partition, 

namely, an analogy class. Then, they form expectations about each opponent’s average behavior 

 
41 Jehiel and Koessler (2008) extends his analogy-based concept to Bayesian games. 
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at every element of the analogy class rather than, more precisely, at each decision node. Though 

conceptually, ABEE is similar to CE, when applied to a different type of games, ABEE also 

suggests that people might not fully consider how others’ choices depend on their information, and 

such deficiency in reasoning is common knowledge among all players.42 In contrast, our model 

allows NLK players to consider heterogeneity in their opponents’ inference process. In our 

adaptation of NLK equilibrium to dynamic games, beliefs for different types of opponents are 

anchored at the beginning of the game and are updated at each stage using Bayes’ Rule. 

Analytically, ABEE coincides with SPNE for the finest analogy partition and as NLK, ABEE can 

also rationalize Passing, in the Centipede Game, to the last few stages for a large range of 

partitions, in violation of the backward induction predictions. However, ABEE does not provide a 

specific way to choose an analogy class, while NLK offers a way of parametric estimation to 

specify beliefs in equilibrium.43 

 As all of the aforementioned solution concepts, NLK maintains the best response to beliefs 

but relaxes NE’s requirement of player’ consistent beliefs about other players. In dynamic games, 

Aumann (1992), like several other writers afterward, has shown that a failure of backward 

induction does not imply a failure of individual rationality. For example, in the Centipede Game, 

backward induction implies that the first mover ought to use Stop at the first decision node, which 

is rarely found in experimental data. These papers show that some relaxations of the “common 

knowledge of rationality,” can explain several rounds of Passing although all of the players are 

individually rational.44,45 

 
42 More specifically, information means the history upon reaching a decision node at which the choice is made. 
43 As an extension of the Level-K model to dynamic games, Ho and Su (2013) apply their model to the experiment 

data of the Centipede Game. However, they intend to study learning across repetitions while ours explains strategic 

behavior better even for novel games. Moreover, unlike their model, NLK does not restrict the strategy set, which 

allows NLK to capture Bayesian updating for beliefs across stages within one round. 
44 One must be careful about the terminology according to the epistemic condition of NE. Aumann and Brandenburger 

(1995) prove that in a two persons’ game, mutual knowledge of preferences and payoffs, rationality, and beliefs for 

the other players’ strategies are sufficient for NE. This is, common knowledge of rationality is not necessary for NE 

in two persons’ game. Moreover, Battigalli and Bonanno (1999) argue that there is a contradiction between results of 

backward induction and a common belief in sequential rationality at later stages. Thus, in this paper by “common 

knowledge of rationality,” we mean in general, the extra assumptions needed for NE/BNE/SPNE besides individual 

rationality. 
45 Aumann (1992) shows that continuation of the game beyond the first node for several rounds could occur even with 

“mutual knowledge” of high degrees. Considering the fact that some sequentially rational behaviors off the 

equilibrium path are only reachable by the violation of sequential rationality, Reny (1992) defines a weaker version 

of sequential rationality in light of forward induction. Ben-Porath (1997) proves that cooperation in the Centipede 

Game is consistent with Common Certainty of Rationality, a weaker concept than the Common Knowledge of 

Rationality. Asheim and Dufwenberg (2003) introduce the concept of “Fully Permissible Sets” to the extensive form 
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