LE

EQUAZIONI

Parleremo di ...

- Che cosa s'intende per identità
- Che cosa s'intende per equazione
- Quando due equazioni si dicono equivalenti

Che cosa s'intende per identità

L'identità è un'uguaglianza tra due espressioni, di cui almeno una let= terale, verificata per qualunque valore attribuito alle lettere.

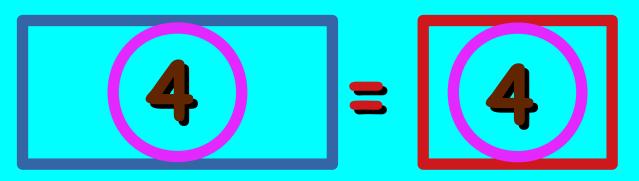
I membro II membro

$$(2+2) = 2a$$

I membro II membro

I membro II membro

I membro II membro



I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

$$(3+3) = 2a$$

I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

I membro II membro

È un'identità perché:

Se a = 2, abbiamo:

Tale uguaglianza è valida per ogni valore di a.

I membro II membro

IDENTITÀ

Che cosa s'intende per equazione

L'equazione è un'uguaglianza tra due espressioni, di cui almeno una let= terale, verificata solo per partico= lari valori attribuiti alle lettere.

I membro II membro

È un'equazione perché: Se x = 4, abbiamo:

I membro II membro

È un'equazione perché: Se x = 4, abbiamo:

I membro II membro

È un'equazione perché:

Se × = 4, abbiamo:

I membro II membro

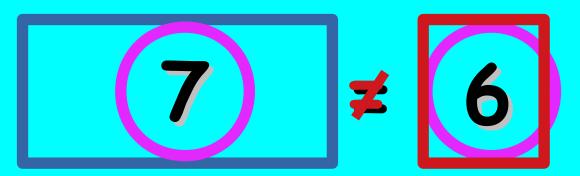
È un'equazione perché:

Se × = 4, abbiamo:

I membro II membro

È un'equazione perché:

Se × = 4, abbiamo:

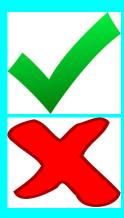


I membro II membro

È un'equazione perché:

Se x = 4, abbiamo:

Se $\times = 5$, abbiamo:



Tale uguaglianza è valida solo per alcuni valori di x.

I membro II membro

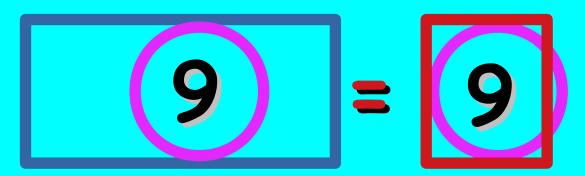
EQUAZIONE

I membro II membro

È un'equazione perché:

I membro II membro

È un'equazione perché: Se x = 2, abbiamo:



I membro II membro

È un'equazione perché:

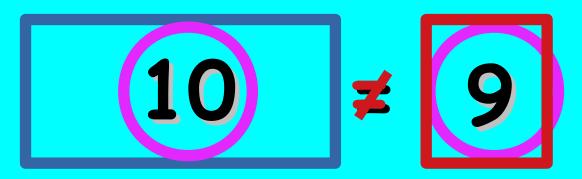
Se × = 2, abbiamo:

I membro II membro

È un'equazione perché: Se x = 2, abbiamo:

I membro II membro

È un'equazione perché: Se x = 2, abbiamo:



I membro II membro

È un'equazione perché:

Se × = 2, abbiamo:

Tale uguaglianza è valida solo per alcuni valori di x.

I membro II membro

EQUAZIONE

Quando due equazioni si dicono equivalenti

Due equazioni si dicono equivalenti quando hanno la stessa soluzione. Vediamo qualche esempio:

$$2x = 8$$

II^a equazione

Sono equazioni equivalenti perché in entrambe la soluzione è

$$x = 4$$

II^a equazione

Sono equazioni equivalenti perché in entrambe la soluzione è

$$x = 4$$

II^a equazione

Sono equazioni equivalenti perché in entrambe la soluzione è

$$x = 4$$

$$8 = 8$$

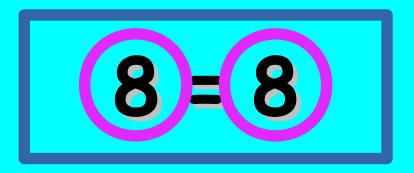
2

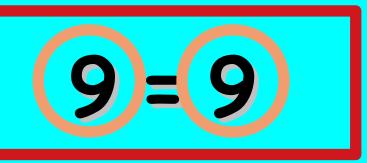
I^a equazione

II^a equazione

Sono equazioni equivalenti perché in entrambe la soluzione è

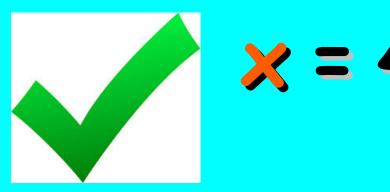
$$x = 4$$





II^a equazione

Sono equazioni equivalenti perché in entrambe la soluzione è



Mentre le equazioni:

I^a equazione II^a equazione

Non sono equivalenti, dato che la soluzione non è la stessa.

La prima si risolve per 💢 = 3

$$3 \cdot 3 = 9$$
 e $x - 2 = 3$

$$\times - 2 = 3$$

I^a equazione II^a equazione

Non sono equivalenti, dato che la soluzione non è la stessa.

La prima si risolve per 💢 = 3

I^a equazione

II^a equazione

Non sono equivalenti, dato che la soluzione non è la stessa.

La prima si risolve per 💢 = 3 ma $\times = 3$ non risolve la seconda.

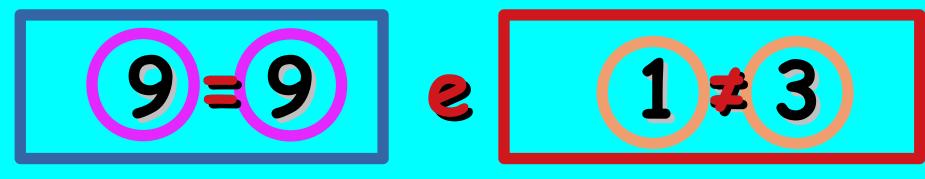
2 3 - 2 = 3

I^a equazione

II^a equazione

Non sono equivalenti, dato che la soluzione non è la stessa.

La prima si risolve per 💢 = 3 ma $\times = 3$ non risolve la seconda.



I^a equazione

II^a equazione

Non sono equivalenti, dato che la soluzione non è la stessa.

La prima si risolve per x = 3ma x = 3 non risolve la seconda.

LE

EQUAZIONI

Parleremo di ...

- ·Il lessico specifico
- Che cosa s'intende per equazione ridotta in forma normale
- *Cosa significa risolvere un'equa= zione

$$6x + 2 = 3x + 14$$

L'espressione a sinistra dell'u= guale è detta "primo membro"; quella a destra dell'uguale è detta "secondo membro".

Il lessico specifico

Prendiamo l'equazione:

$$6x + 2 = 3x + 14$$

I membro

II membro

Il lessico specifico

Prendiamo l'equazione:

$$6x + 2 = 3x + 14$$

La lettera che figura nell'equa= zione, e che indica un valore numerico variabile, è detta incognita.

$$6x + 2 = 3x + 14$$

I numeri che moltiplicano l'inco= gnita sono detti coefficienti.

$$6x + 2 = 3x + 14$$

I termini che non contengono l'in= cognita sono detti termini noti.

$$6x + 2 = 3x + 14$$

$$6 \cdot 4 + 2 = 3 \times + 14$$

$$6 \cdot 4 + 2 = 3 \cdot 4 + 14$$

$$24 + 2 = 3 \cdot 4 + 14$$

$$24 + 2 = 12 + 14$$

$$26 = 12 + 14$$

Cosa s'intende per equazione ridotta in forma normale

cioè con un solo termine conte= nente l'incognita al I membro e con un termine noto al II membro.

Riportiamo qui la formula:

$$ax = b$$

E vediamo alcuni esempi di equa= zioni ridotte in forma normale:

$$5x = -8$$
 $-2x = 6$
 $3x = 7$ $4x = -12$

Riportiamo qui la formula:

$$ax = b$$

E ora alcuni esempi di equazioni non ridotte in forma normale:

$$x - 1 = 12$$

 $8 + x = 6 + 3x$

Cosa significa risolvere un'equazione

Risolvere un'equazione significa trovare il valore che, attribuito alla x, rende vera l'uguaglianza.

$$x + 2 = 6$$

$$\dot{e} \times = 4.$$

$$4+2=6$$

$$\dot{e} \times = 4.$$

$$\dot{e} \times = 4.$$

$$4x - 9 = 3x - 1$$

$$\grave{e} \times = 8.$$

$$4 \cdot 8 - 9 = 3 \times - 1$$

$$\grave{e} \times = 8.$$

$$\grave{e} \times = 8.$$

$$32 - 9 = 3 \cdot 8 - 1$$

$$\grave{e} \times = 8.$$

$$32 - 9 = 24 - 1$$

$$\grave{e} \times = 8.$$

$$23 = 24 - 1$$

$$\grave{e} \times = 8.$$

$$\grave{e} \times = 8.$$

Come si risolve un'equazione lo spiegherò in un prossimo tutorial; qui vi anticipo però che prima è necessario ridurla in forma normale.

Questa qui:

LE

EQUAZIONI

Parleremo di ...

- ·I principi di equivalenza:
 - Il 1° principio di equivalenza
 - La regola del trasporto
 - La regola della cancellazione
 - Il 2° principio di equivalenza

I principi di equivalenza

Ci sono delle regole che ci permet= tono di ottenere un'equazione equivalente all'equazione data. Conoscerle e applicarle è di grande utilità durante la risoluzione di un'equazione.

Esse sono:

- Il 1° principio di equivalenza E direttamente derivati da esso:
 - La regola del trasporto
 - La regola della cancellazione

E:

Il 2° principio di equivalenza Vediamole nel dettaglio.

Il primo principio di equivalenza

Il 1° principio di equivalenza dice che, aggiungendo o sottraendo ad entrambi i membri di un'equazione uno stesso numero, l'equazione resta equivalente alla data.

$$5x + 2 = 12$$

Essa è equivalente all'equazione:

$$5x + 2 + 3 = 12 + 3$$

$$5x + 2 = 12$$

Essa è equivalente all'equazione:

$$5x + 2 + 3 = 12 + 3$$

Ed è equivalente all'equazione:

$$5x + 2 - 2 = 12 - 2$$

La regola del trasporto

La regola del trasporto dice che data un'equazione, trasportando un termine da un membro all'altro e cambiandogli di segno, si ottiene un'equazione equiva= lente a quella data.

$$2x \left(-4\right) = 12$$

Essa è equivalente all'equazione:

$$2x - 4 = (12)$$

Essa è equivalente all'equazione:

Ed è equivalente all'equazione:

$$2x - 4 - 12 = 0$$

La regola della cancellazione

La regola della cancellazione dice che, data un'equazione, se ci sono termini uguali presenti in entrambi i membri, essi possono essere cancellati ottenendo un'equazione equivalente.

Essa è equivalente all'equazione:

$$3x = 12$$

Il secondo principio di equivalenza

Il 2° principio di equivalenza dice che, moltiplicando o dividendo en= trambi i membri di un'equazione per uno stesso numero diverso da 0, l'equazione resta equivalente alla data.

$$6x + 2 = 12$$

Essa è equivalente all'equazione:

$$(6x + 2) \cdot 3 = 12 \cdot 3$$

 $18x + 6 = 36$

$$6x + 2 = 12$$

Ed è equivalente all'equazione:

$$(6x + 2):2 = 12:2$$

$$3\times + 1 = 6$$

LE

EQUAZIONI

Parleremo di ...

'Il primo principio di equivalenza

Il primo principio di equivalenza

Il 1° principio di equivalenza dice che, aggiungendo o sottraendo ad entrambi i membri di un'equazione uno stesso numero, l'equazione resta equivalente alla data.

$$5x + 2 = 12$$

$$5 \cdot 2 + 2 = 12$$

$$10 + 2 = 12$$

E aggiungiamo a entrambi i mem= bri 3:

$$5x + 2 = 12$$

E aggiungiamo a entrambi i mem= bri 3:

$$5x + 2 + 3 = 12 + 3$$

Eseguiamo i calcoli.

E aggiungiamo a entrambi i mem= bri 3:

$$5\times + 5 = 12 + 3$$

Eseguiamo i calcoli.

E aggiungiamo a entrambi i mem= bri 3:

$$5\times + 5 = 15$$

Eseguiamo i calcoli.

E aggiungiamo a entrambi i mem= bri 3:

$$5 \cdot 2 + 5 = 15$$

Eseguiamo i calcoli.

E aggiungiamo a entrambi i mem= bri 3:

$$10 + 5 = 15$$

Eseguiamo i calcoli.

E aggiungiamo a entrambi i mem= bri 3:

Eseguiamo i calcoli.

$$5x + 2 = 12$$

$$5x + 2 - 2 = 12 - 2$$

Eseguiamo i calcoli.

$$5x = 12-2$$

Eseguiamo i calcoli.

$$5\times$$
 = 10

Eseguiamo i calcoli.

Eseguiamo i calcoli.

Eseguiamo i calcoli.

Eseguiamo i calcoli.

Il primo principio di equivalenza

Quindi abbiamo verificato che, aggiungendo o sottraendo ad entrambi i membri di un'equazione uno stesso numero, l'equazione resta equivalente alla data.

LE

EQUAZIONI

Parleremo di ...

La regola della cancellazione

La regola della cancellazione

La regola della cancellazione dice che, data un'equazione, se ci sono termini uguali presenti in entrambi i membri, essi possono essere cancellati ottenendo un'equazione equivalente.

$$3x + 6 = 12 + 6$$

Essa è risolta dal valore:

$$x = 4$$

$$3 \cdot 4 + 6 = 12 + 6$$

Essa è risolta dal valore:

$$x = 4$$

$$12 + 6 = 12 + 6$$

Essa è risolta dal valore:

$$x = 4$$

18 = 12 + 6

Essa è risolta dal valore:

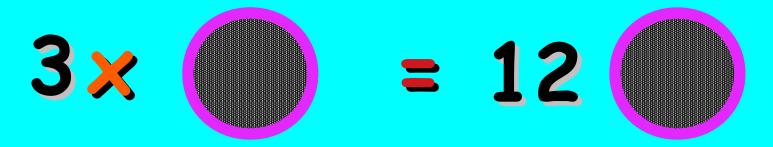
$$x = 4$$

18 = 18

Essa è risolta dal valore:

x = 4

Ora riprendiamo l'equazione iniziale



E cancelliamo i termini uguali sia a primo che a secondo membro.

$$3x = 12$$

La cui soluzione è ancora il valore:

$$x = 4$$

$$3 \cdot 4 = 12$$

La cui soluzione è ancora il valore:

$$x = 4$$

La cui soluzione è ancora il valore:

$$x = 4$$

$$5x - 5 = 30 - 5$$

Essa è risolta dal valore:

$$x = 6$$

$$5 \cdot 6 - 5 = 30 - 5$$

Essa è risolta dal valore:

$$x = 6$$

30 - 5 = 30 - 5

Essa è risolta dal valore:

$$x = 6$$

25 = 30 - 5

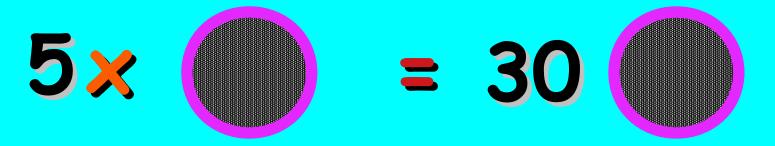
Essa è risolta dal valore:

$$x = 6$$

Essa è risolta dal valore:

$$x = 6$$

Riprendiamo la nostra l'equazione:



E cancelliamo i termini uguali sia a primo che a secondo membro.

$$5x = 30$$

La cui soluzione è ancora il valore:

$$x = 6$$

La cui soluzione è ancora il valore:

$$x = 6$$

La cui soluzione è ancora il valore:

$$x = 6$$

La regola della cancellazione

Abbiamo quindi verificato che, data un'equazione, se ci sono termini uguali presenti in entrambi i membri, essi possono essere cancellati ottenendo un'equazione equivalente.

LE

EQUAZIONI

Parleremo di ...

'Il II' principio di equivalenza

Il secondo principio di equivalenza

Il 2° principio di equivalenza dice che, moltiplicando o dividendo en= trambi i membri di un'equazione per uno stesso numero diverso da 0, l'equazione resta equivalente alla data.

$$4x + 8 = 12$$

$$4 \cdot 1 + 8 = 12$$

$$4 + 8 = 12$$

$$4\times +8 = 12$$

$$(4 \times + 8) \cdot 3 = 12 \cdot 3$$

Eseguiamo i calcoli.

$$12x + 24 = 12 \cdot 3$$

Eseguiamo i calcoli.

$$12x + 24 = 36$$

Eseguiamo i calcoli.

L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: X=1

$$12x + 24 = 36$$

Sostituiamo, eseguiamo i calcocoli ed effettuiamo la verifica. L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: X=1

$$12 \cdot 1 + 24 = 36$$

L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: X=1

12 + 24 = 36

L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: $\times = 1$

$$4\times +8 = 12$$

$$(4 \times + 8):4 = 12:4$$

Eseguiamo i calcoli.

$$x + 2 = 12:4$$

Eseguiamo i calcoli.

$$x + 2 = 3$$

Eseguiamo i calcoli.

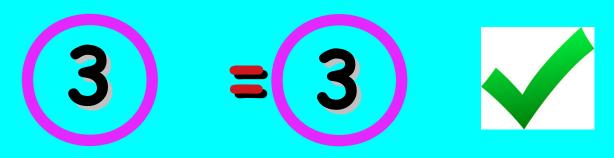
L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: X=1

$$\times + 2 = 3$$

L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: $\times = 1$

$$1+2=3$$

L'equazione che abbiamo ricavato è equivalente a quella iniziale: la sua soluzione infatti è: $\times = 1$



Il secondo principio di equivalenza

Abbiamo dunque verificato che, moltiplicando o dividendo en= trambi i membri di un'equazione per uno stesso numero diverso da 0, l'equazione resta equivalente alla data.

E

EQUAZIONI

Parleremo di ...

- Come si risolve un'equazione
 - Ridurre in forma normale
 - *Calcolare il valore della x

Come risolvere un'equazione

Risolvere un'equazione significa trovare il valore che, attribuito alla x, rende vera l'uguaglianza.

La soluzione dell'equazione:

$$x + 2 = 6$$

$$\dot{e} \times = 4.$$

Infatti, sostituendo alla X il valore 4, abbiamo:

La soluzione dell'equazione:

$$4+2=6$$

$$\dot{e} \times = 4.$$

Infatti, sostituendo alla \times il valore 4, abbiamo:

La soluzione dell'equazione:

$$\dot{e} \times = 4.$$

Infatti, sostituendo alla \times il valore 4, abbiamo:

Per risolvere un'equazione bisogna passare attraverso due passaggi: il primo è ridurre l'equazione in forma normale:

cioè questa qui: QX=b

il secondo è dividere il termine noto per il coefficiente della

Ridurre un'equazione in forma normale

Un'equazione si dice ridotta in forma normale quando si presenta nella forma:

a x = b

cioè con un solo termine conte= nente l'incognita al I membro e con un termine noto al II membro.

Riportiamo qui la formula:

$$ax = b$$

E vediamo alcuni esempi di equa= zioni ridotte in forma normale:

$$5x = -8$$

$$-2x=6$$

Riportiamo qui la formula:

$$ax = b$$

E ora alcuni esempi di equazioni non ridotte in forma normale:

$$x - 1 = 12$$

 $8 + x = 6 + 3x$

Per ridurre un'equazione in forma normale bisogna applicare nella maniera opportuna i principi di equivalenza che vi ho spiegato nei tutorial precedenti:

- il primo principio di equivalenza
- la regola del trasporto
- la regola della cancellazione
- ·il secondo principio di equivalenza
- la regola del cambiamento di segno

Facciamo un esempio. Prendiamo l'equazione:

$$3x + 4 + 6x = 12 + 3x - 2$$

Per scriverla in forma normale, il nostro primo obiettivo è portare tutti i termini con la x a primo membro e tutti i termini noti a secondo membro.

Cerchiamo con due colori diversi i termini con la x e quelli senza:

$$3x + 4 + 6x = 12 + 3x - 2$$

Per scriverla in forma normale, il nostro primo obiettivo è portare tutti i termini con la x a primo membro e tutti i termini noti a secondo membro.

Cerchiate con due colori diversi i termini con la x e quelli senza:

$$3x+4+6x=(12+3x)-2$$

In primo luogo qui io osserverei che abbiamo due termini uguali in entrambi i membri: applico la regola della cancella=zione e li elimino.

A questo punto c'è solo da spostare a secondo membro il +4

$$+4+6x=(12)-4(-2)$$

Applico la regola del trasporto e, dato che oltrepassa il segno = , cambia di segno.

A questo punto c'è solo da spostare a secondo membro il +4

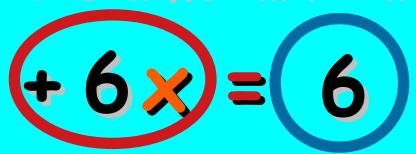
$$(+6x)=(12)(-4)(-2)$$

Applico la regola del trasporto e, dato che oltrepassa il segno = , cambia di segno.

Eseguiamo i calcoli a secondo membro e siamo arrivati:

$$+6x)=(12)(-4)(-2)$$

Eseguiamo i calcoli a secondo membro e siamo arrivati:



Ecco la nostra equazione ridotta in forma normale.

Per calcolare il valore della x manca ancora un ultimo passaggio ma ve lo mostro subito.

Calcolare il valore della x

Una volta che l'equazione è stata ridotta in forma normale, per calcolare il valore dell'incognita è sufficiente dividere il termine noto per il coefficiente della x.

Riprendiamo l'equazione su cui abbiamo appena lavorato:

$$+6x = 6 \Rightarrow x = 1$$

$$6$$

Il coefficiente della X è +6.

Il termine noto è 6.

Divido il termine noto per il coefficiente.

Questo modo di procedere deriva in realtà dall'applicazione del secondo principio di equivalenza: abbiamo infatti diviso entrambi i membri per uno stesso numero diverso da zero (vale a dire il coefficiente della x).

Però vi basti saper applicare la procedura che vi ho mostrato. Vediamo un esempio con dei numeri razionali:

$$+3x = 9 : \frac{3}{5}$$
 $5 = 10 : \frac{3}{5}$

Il coefficiente della \times è + $\frac{3}{5}$. Il termine noto è $\frac{9}{10}$. Divido.

Vediamo un esempio con dei numeri razionali:

$$+3x = 9^3 . 5^1 \rightarrow x = 3$$
 $5 . 102 . 31 . 2$

Il coefficiente della \times è + $\frac{3}{5}$. Il termine noto è $\frac{9}{10}$. Divido.

LE

EQUAZIONI

Parleremo di ...

- Come si fa la verifica di una equazione
- Equazioni determinate, impossi= bili e indeterminate

Come si fa la verifica di un'equazione

Una volta risolta un'equazione, c'è un modo per verificare che la soluzione ottenuta sia quella corretta.

Come si fa la verifica di un'equazione

È un po' come il "fare la prova" che vi è stato insegnato alle elementari per le quattro operazioni. Questa procedura si chiama "fare la verifica".

Come si fa la verifica di un'equazione

Per verificare che la soluzione ottenuta sia quella corretta, si sostituisce all'incognita la soluzione trovata e si verifica che il primo membro è uguale al secondo membro.

$$x + 2 = 6$$

$$\dot{e} \times = 4.$$

$$4 + 2 = 6$$

$$\dot{e} \times = 4.$$

$$\dot{e} \times = 4.$$

$$4x - 9 = 3x - 1$$

$$\grave{e} \times = 8.$$

$$4 \cdot 8 - 9 = 3 \times - 1$$

$$\grave{e} \times = 8.$$

$$4 \cdot 8 - 9 = 3 \cdot 8 - 1$$

$$\grave{e} \times = 8.$$

$$32 - 9 = 3 - 8 - 1$$

$$\grave{e} \times = 8.$$

$$32 - 9 = 24 - 1$$

$$\grave{e} \times = 8.$$

$$23 = 24 - 1$$

$$\grave{e} \times = 8.$$

$$\grave{e} \times = 8.$$

Equazioni determinate, impossibili e indeterminate

Le equazioni si dividono in tre tipi:

- equazioni determinate
- equazioni impossibili
- equazioni indeterminate

Vediamoli nel dettaglio.

Un'equazione determinata è quella che ci viene proposta di solito e di cui ci si chiede di fare la verifica. È un'equazione che ha una e una sola soluzione.

In forma normale si presenta così:

Vi faccio degli esempi.

È un equazione determinata:

Lalai soluzione è: X=4

In forma normale si presenta così:

Vi faccio degli esempi.

È un equazione determinata:

La cui soluzione è:

In forma normale si presenta così:

Vi faccio degli esempi.

È un equazione determinata:

$$5x = -6$$

La cui soluzione è:

Un'equazione si dice impossibile quando <u>non</u> ha alcuna soluzione.

In forma normale si presenta così:

Ox=b

Notate che il coefficiente è 0.

Sono equazioni impossibili: $0 \times = 0 \times = -$

Un'equazione si dice indeterminata quando ha infinite soluzioni.

Un'equazione indeterminata in forma normale si presenta così:

0x=

Notate che il coefficiente è 0 e che anche il termine noto è 0.