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Abstract

Maximum Relative Drawdown measures the largest percentage drop of the price process on a given time
interval. Recently, Maximum Relative Drawdown has become more popular as an alternative measure
of risk. In contrast to the Value at Risk measure, it captures the path property of the price process. In
this article, we propose a partial differential equation approach to determine the theoretical distribution
of the Maximum Relative Drawdown. We also discuss the possibility of constructing an option contract
that would insure the event that the Maximum Relative Drawdown exceeds a certain fixed percentage.
We call these contracts Crash Options. We compute the theoretical prices and hedging strategies for the
Crash Option.

1 Introduction

The maximum relative drawdown Dδ
T of a stock price St is defined as the largest percentage drop of the asset

price from its maximum on a given time interval [T − δ, T ]. We can write the maximum relative drawdown
Dδ

T as

(1) Dδ
T = sup

T−δ≤t≤T

(
Mt − St

Mt

)
,

where Mt = supT−δ≤s≤t Ss. Closely related is the concept of maximum (absolute) drawdown MDDδ
T , defined

as

(2) MDDδ
T = sup

T−δ≤t≤T
(Mt − St) ,

the largest absolute value drop on a given time interval [T − δ, T ]. In particular, notice that the maximum
drawdown of the Brownian motion is the maximum relative drawdown of the geometric Brownian motion.

The drawdown has been extensively studied in recent literature. Portfolio optimization using constraints
on the drawdown has been considered in Chekhlov, Uryasev and Zabarkin (2005). Harmantzis and Miao
(2005) considered the impact of heavy tail returns on maximum drawdown risk measure. Analytical results
linking the maximum drawdown to the mean return appeared in the paper of Magdon-Ismail and Atiya
(2004). In a related paper, Magdon-Ismail et. al. (2004) determined the distribution of the maximum draw-
down of Brownian motion.

Our paper extends the results obtained by Magdon-Ismail et. al. (2004), giving an alternative character-
ization of the distribution of the maximum drawdown by using the methods of partial differential equations.
The advantage of our method is that it could be used for more general dynamics of the underlying pro-
cess. We illustrate this concept by giving an analytical characterization of the distribution of the maximum
(absolute) drawdown of geometric Brownian motion.
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The concept of the relative drawdown is depicted in Figures 1 and 2. Figure 1 is the S&P500 index for
period 01/1970 – 12/2005. Figure 2 is the corresponding maximum relative drawdown for a 3 month window
and 1 year window respectively. Notice that the plot of the maximum relative drawdown peaks during the
periods of market crises and is low in stable periods. Thus it can serve as an excellent indicator of the market
stability.
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Figure 1: Index S&P 500 from 01/1970 to 12/2005.
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Figure 2: Maximum relative drawdown for δ=3 months (left) and δ=1 year (right) of S&P500 index, period from
01/1970 to 12/2005.

The graphs of the maximum relative drawdown also suggest the following definition of a market crash.
The first time when the maximum relative drawdown

(
1− St

Mt

)
exceeds the level x could be regarded as a

market crash, denoted by Tx:

(3) Tx = inf
{

u ≥ 0
(
1− Su

Mu

)
≥ x

}

This time is directly observable by the market and thus can serve as the trigger point for contracts which
insure the event of a market crash.
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Previous literature on market crashes is mostly limited to empirical research as opposed to creating active
trading strategies which could hedge out such events. An excellent review of the existing techniques for
analysis and potential prediction of such events is given in Sornette (2004). Our research provides additional
tools for managing the adverse market moves.

We introduce two contracts whose payoffs are linked to the time of the market crash Tx. We call them
crash options. The first contract we consider is a crash option with a payoff of $ 1 at the time when the
maximum relative drawdown exceeds a certain percentage x. The second contract is triggered at the same
instant, but the payoff resets the holder’s account to the maximum of the asset price.

The introduction of contingent claims linked to the crash would introduce new tools for managing these
adverse market movements. Existing contracts, such as deep out of the money puts, are weakly path depen-
dent and thus have only limited predictive ability of the potential future drawdown. When the market is in
a bubble, it is reasonable to expect that the prices of drawdown contracts would be significantly higher then
when the market is stable, or when it exhibits mean reversion behavior. The prices of contracts linked to the
maximum drawdown can serve as an indicator of the risk of future market crises.

The crash option described in this article is a novel concept, although some existing financial contracts
have embedded features resembling the insurance of the market crash. For instance, equity default swaps are
triggered by significant drops in the asset value. As for the pricing of EDS, see Albanese and Chen (2005).
The list of other possible contracts which depend on the maximum (absolute) drawdown is given in Vecer
(2006).

The paper is structured as follows. First we give the partial differential equation for the distribution of
the maximum relative drawdown. We use a Brownian motion model in this paper for its simplicity, although
it is possible to extend our techniques to more general settings (such as jumps, etc.). The second part of the
paper introduces the crash options and studies their prices and the corresponding hedging strategies. We use
parameters r = 0.03 and σ = 0.12. We used volatility implied from one year options on S&P500 from the
middle of 2005. It might seem to be a low estimate, however the realized payoffs of crash options tend to
be lower than their theoretical prices, perhaps due to the presence of certain mean reversion in the market.
Other factors, such as stochastic volatility or jumps are dominated by the presence (or absence) of the mean
reversion.

2 Distribution of the Maximum Relative Drawdown

Our concern is to find the theoretical distribution of the random variable Dδ
T for a given T . Without the loss

of generality we may assume that δ = T , and find the distribution of the maximum relative drawdown on a
time interval of length T . Let us denote

DT = DT
T .

Let us consider a geometric Brownian motion for the underlying dynamics of the asset price St

(4) dSt = rStdt + σStdWt.

The approach we are using is based on the heat equation with specific boundary and terminal conditions.
The equation allows us to calculate the probability P(DT ≥ x) for a given value x ∈ (0, 1).

Theorem 2.1 Let DT be the maximum relative drawdown of a geometric Brownian motion. Then

P(DT ≤ x) = 1− u(0, 1),

where function u(t, z) is a solution of the partial differential equation

(5) ut(t, z) + rzuz(t, z) + 1
2σ2z2uzz(t, z) = 0
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defined in region (0, T )× (1− x, 1) with the boundary conditions

u(T, z) = 0 for 1− x < z ≤ 1(6)
uz(t, 1) = 0 for t ∈ [0, T ](7)

u(t, 1− x) = 1 for t ∈ [0, T ].(8)

Proof of the theorem is based on the martingale techniques and is given in the appendix.

As an illustration, Figure 3 shows the distribution function of DT which was obtained from solutions of
the partial differential equation for the function u.
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Figure 3: The distribution functions P (DT ≤ x) for various horizons T , based on the numerical solutions of the
partial differential equation u. The parameters are r = 3% and σ = 12%. The plot shows that the distribution of DT

is positively skewed and P (DT ≤ x) decreases as T goes up.

The same martingale techniques lead to the following characterization of the distribution of the maximum
(absolute) drawdown of geometric Brownian motion. However, in this case the resulting partial differential
equation is two dimensional in space and the reduction of the dimension is not possible.

Remark 2.2 Let MDDT be the maximum relative drawdown of a geometric Brownian motion. Then

P(MDDT ≤ x) = 1− v(0, S0, S0),

where function v is the solution of the following partial differential equation

(9) vt(t, s, m) + rsvs(t, s,m) + 1
2σ2s2vss(t, s, m) = 0

satisfied on (0, T )× {(s,m); s > 0 & m− x < s ≤ m}

v(T, s, m) = 0 for m− x < s ≤ m
vm(t, s, s) = 0 for t ∈ [0, T ]

v(t, s, s + x) = 1 for t ∈ [0, T ].

(10)
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3 Options on the Maximum Relative Drawdown

A portfolio manager concerned with a control of the maximum drawdown might want to insure the event
the maximum relative drawdown exceeds a certain threshold, either by entering the corresponding option
contract, or by creating a hedge which would replicate the payoff. Let us consider two types of closely related
contracts. The first pays off $1 at the time when the maximum relative drawdown exceeds a certain percentage
(crash option with digital payoff), the other one resets the options holder’s account to the historical maximum
at the time when the maximum relative drawdown exceeds a certain percentage (crash option resetting to
the maximum value).

3.1 Crash Option with Digital Payoff

Let us consider a contract which pays off $1 at the time when the relative drop of St from its maximum
exceeds a value x. If the the relative drawdown stays below x until maturity T, the contract expires worthless.
If the option is knocked in (i.e. Tx ≤ T ), $1 is paid to the holder at time Tx.

We define the value of this digital option by the standard pricing formula:

(11) Vt = E[e−r(Tx−t)I{DT >x}|Ft] = E[e−r(Tx−t)I{Tx≤T}|Ft]

Similar to the approach used in the previous section, Vt can be expressed as a function of time and (St,Mt)
on the set {t < Tx}: Vt = v(t, St,Mt). Definition (11) implies that e−rtVt is a Ft-martingale. Using similar
reasoning as in the previous chapter leads to the following partial differential equation:

vt(t, s, m) + rsvs(t, s,m) + 1
2σ2s2vss(t, s,m) = rv(t, s, m)

on (0, T )×
{

(s,m); s > 0 & s < m < s
1−x

}(12)

v(T, s,m) = 0 for s ≤ m < s
1−x

vm(t, s, s) = 0 for t ∈ [0, T ]
v

(
t, s, s

1−x

)
= 1 for t ∈ [0, T ]

(13)

Again, we can define the function u
(
t, s

m

)
= v(t, s,m) to obtain the following result

Theorem 3.1 The value of the digital option on the maximum relative drawdown is given by

(14) Vt = u
(
t, St

Mt

)
,

where u is the solution of the following partial differential equation:

(15) ut(t, z) + rzuz(t, z) + 1
2σ2z2uzz(t, z) = ru(t, z)

satisfied on (0, T )× (1− x, 1) with boundary conditions

u(T, z) = 0 for 1− x < z ≤ 1
uz(t, 1) = 0 for t ∈ [0, T ]

u(t, 1− x) = 1 for t ∈ [0, T ]

(16)

The hedge ∆(t) is given by

(17) ∆(t) = vs(t, St, Mt) = 1
Mt

uz

(
t, St

Mt

)
.

Figure 4 gives the price and the hedging strategy for the digital crash option as a function of time and
the drop level. Figure 5 gives graphs of the price as a function of time to maturity and the drop level. Table
1 lists prices of the contract for selected drop levels and maturities.
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Figure 4: Left: The value of the digital crash option price u (t, z) for T = 1, r = 3%, σ = 12% and x = 20%. Right:
The hedge multiplied by the value of the maximum mvs(t, s, m) = uz
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Figure 5: Left: The initial price of the digital crash option as a function of time to maturity T for r = 3%, σ = 12%
and x = 20%. Right: The initial price of the digital option as a function of the relative drop x.

3.2 Crash Option Resetting to Maximum Value

Another possible contract to consider is a crash option which resets the holder’s account to the historical
maximum at the time when the maximum relative drawdown reaches the level x. Thus the payoff is given
by xMTx at time Tx. For this contract, its value is given by

v(t, s,m) = xE[e−r(Tx−t)I(Tx < T )MTx |St = s,Mt = m],

We have the following partial differential equation

(18) vt(t, s,m) + rxvs(t, s,m) + 1
2σ2s2vss(t, s, m) = rv(t, s, m)

for the value function v, satisfied in the region {(t, s, m); 0 ≤ t < T, s ≤ m ≤ 1
1−xs}, with boundary conditions

v(t, (1− x)m,m) = xm, 0 ≤ t ≤ T, m > 0,

vm(t,m, m) = 0, 0 ≤ t ≤ T, m > 0,

v(T, s,m) = 0, s ≤ m < 1
1−xs.

Since the percentage value crash option satisfies the linear scaling property

v(t, λs, λm) = λv(t, s, m),
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Maturity
Drop Percentage 1M 3M 6M 1Y 5Y 25Y ∞

5% .2641 .7399 .9423 .9921 .9942 .9942 .9942
10% .0042 .1388 .3823 .6838 .9737 .9746 .9746
15% .0000 .0108 .0891 .2887 .8720 .9377 .9377
20% .0000 .0003 .0123 .0924 .6344 .8799 .8806
25% .0000 .0000 .0009 .0216 .3958 .7901 .8022

Table 1: The price of the Digital Crash Option for selected drop levels and selected maturities using the parameters
r = 3%, σ = 12%.

we may reduce the dimensionality of the problem by introducing function u

u(t, z) = v(t, z, 1), 0 ≤ t ≤ T, 1− x ≤ z ≤ 1.

Then
v(t, s, m) = mu(t, s

m ).

The following result easily follows:

Theorem 3.2 The value of the crash option with the payoff xMTx
at time Tx is given by

(19) Vt = Mtu(t, St

Mt
),

where u satisfies the following partial differential equation

(20) ut(t, z) + rzuz(t, z) + 1
2σ2z2uzz(t, z) = ru(t, z), 0 ≤ t ≤ T, 1− x ≤ z ≤ 1,

with boundary conditions

u(T, z) = 0, 1− x < z ≤ 1,

u(t, 1) = uz(t, 1), 0 ≤ t < T,

u(t, 1− x) = x, 0 ≤ t ≤ T.

The hedge is given by ∆(t)

(21) ∆(t) = vs(t, St, Mt) = uz(t, St

Mt
).

Figure 6 gives the price and the hedging strategy for the crash option which resets its holder’s account to
the maximum as a function of time and the drop level. Figure 7 gives graphs of the price as a function of time
to maturity and the drop level. Table 2 lists prices of the contract for selected drop levels and maturities.
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Figure 7: Left: The initial price of the crash option as a function of time to maturity T for S0 = 1, r = 3%, σ = 12%
and x = 20%. Right: The initial price of the crash option as a function of the relative drop x.

4 Appendix

Proof of Theorem 2.1: Fix a number x ∈ (0, 1) and express the distribution function of DT as

(22) P(DT ≤ x) = 1− P(DT > x) = 1− EI{DT >x},

where the symbol I represents the indicator function.
The first time when the relative drop

(
1− St

Mt

)
reaches the level x is denoted by Tx:

(23) Tx = inf
{

u ≥ 0
(
1− Su

Mu

)
≥ x

}

If the difference does not exceed x, we set Tx to be equal to infinity. The events {DT > x} and {Tx ≤ T}
are identical. Therefore P(DT ≤ x) = 1− EI{Tx≤T}.

Let us define the process Vt

(24) Vt = E[I{Tx≤T}|Ft]
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Maturity
Drop Percentage 1M 3M 6M 1Y 5Y 25Y ∞

5% 1.34% 3.83% 4.94% 5.25% 5.26% 5.26% 5.26%
10% 0.04% 1.42% 3.99% 7.35% 11.07% 11.11% 11.11%
15% 0.00% 0.16% 1.38% 4.60% 15.65% 17.65% 17.65%
20% 0.00% 0.01% 0.25% 1.95% 15.21% 24.87% 25.00%
25% 0.00% 0.00% 0.02% 0.56% 11.69% 31.02% 33.33%

Table 2: The price of the Percentage Crash Option for selected drop levels and selected maturities. The price of the
option is given as a percentage of the initial asset price using the parameters r = 3%, σ = 12%. The perpetual option
has the price x

1−x
. The percentage drop of any level happens in finite time, the payoff of the option being xMTx ,

which is a value exceeding xS0.

The following notation will be used: Tx,t = inf
{

u ≥ t
(
1− Su

Mu

)
≥ x

}
. On the set {t < Tx}, it holds

I{Tx≤T} = I{Tx,t≤T}. Hence, we can write:

(25) Vt = E[I{Tx,t≤T}|Ft] on {t < Tx}
Indicator I{Tx,t≤T} depends on (Ss, t ≤ s ≤ T ) and (Ms, t ≤ s ≤ T ). By using the Markov property of
(St,Mt), it is possible to express Vt as a function of time and (St,Mt):

(26) Vt = v(t, St,Mt) on the set {t < Tx}
We can apply the Itô Formula to the process v(t, St, Mt) :

dv(t, St,Mt) = vt dt + vs dSt + vm dMt + 1
2vss d〈St〉(27)

=
(
vt + rStvs + 1

2σ2S2
t vss

)
dt + vmdMt + σStvsdWt.

The definition of Vt implies that this process is a Ft-martingale and v(t, St,Mt) is a Ft-martingale for
t < Tx. According to this fact, the function v(t, s, m) must satisfy the following partial differential equation:

vt(t, s, m) + rsvs(t, s, m) + 1
2σ2s2vss(t, s, m) = 0

on (0, T )×
{

(s, m); s > 0 & s < m < s
1−x

}(28)

v(T, s, m) = 0 for s ≤ m < s
1−x

vm(t, s, s) = 0 for t ∈ [0, T ]
v

(
t, s, s

1−x

)
= 1 for t ∈ [0, T ]

(29)

The terminal condition reflects the fact that if
(
1− St

Mt

)
< x for t ∈ [0, T ], then I{Tx≤T} = 0 and VT = 0.

The first boundary condition ensures that vmdMu = 0 (see Shreve (2004), section 7.4.2, for details). The
other boundary condition corresponds to the following equality: v(Tx, STx ,MTx) = VTx = 1.

If v satisfies the above PDE, then dv(t, St,Mt) = σvsdWt, and the process v(t, St,Mt) is a Ft-martingale.
Process Vt depends on values St and Mt only through the ratio St

Mt
(on the set {t < Tx}). Consequently,

function v satisfies the equality below:

(30) v(t, s, m) = v(t, λs, λm).

Such a property allows us to define a function u(t, z) on [0, T ]× [1− x, 1]:

(31) u
(
t,

s

m

)
= v(t, s, m)
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It holds that vt = ut, vs = 1
muz, vss = 1

m2 uzz, vm = − s
m2 uz.

Hence, the partial differential equation can be expressed in terms of u :

ut(t, z) + rzuz(t, z) + 1
2σ2z2uzz(t, z) = 0

on (0, T )× (1− x, 1)
(32)

u(T, z) = 0 for 1− x < z ≤ 1
uz(t, 1) = 0 for t ∈ [0, T ]

u(t, 1− x) = 1 for t ∈ [0, T ]

(33)

Variable z stands for the ratio s
m .

Let u be the solution of the above equation. Then v(0, S0, S0) = u(0, 1). For the given x ∈ (0, 1), the
following holds:

(34) P(DT ≤ x) = 1− EI(Tx≤T ) = 1− V0 = 1− v(0, S0, S0) = 1− u(0, 1).

¦
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